cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A204123 Symmetric matrix based on f(i,j)=max([i/j],[j/i]), where [ ]=floor, by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 1, 1, 4, 5, 2, 1, 2, 5, 6, 2, 1, 1, 2, 6, 7, 3, 1, 1, 1, 3, 7, 8, 3, 2, 1, 1, 2, 3, 8, 9, 4, 2, 1, 1, 1, 2, 4, 9, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 11, 5, 3, 2, 1, 1, 1, 2, 3, 5, 11, 12, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 12, 13, 6, 3, 2, 1, 1, 1, 1, 1, 2, 3, 6, 13, 14, 6, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

This sequence represents the matrix M given by f(i,j)=max([i/j],[j/i]) for i>=1 and j>=1. See A204124 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 2 3 4 5 6
2 1 1 2 2 3
3 1 1 1 1 2
4 2 1 1 1 1
5 2 1 1 1 1
6 3 2 1 1 1
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[Floor[i/j], Floor[j/i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204123 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204124 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204125 Symmetric matrix based on f(i,j)=(i if i=j and 1 otherwise), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204125 represents the matrix M given by f(i,j)=max([i/j],[j/i]) for i>=1 and j>=1. See A204126 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 1 1 1 1 1
1 2 1 1 1 1
1 1 3 1 1 1
1 1 1 4 1 1
1 1 1 1 5 1
1 1 1 1 1 6
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1; f[i_, i_] := i;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204125 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204126 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204131 Symmetric matrix based on f(i,j)=(2i-1 if i=j and 1 otherwise), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204131 represents the matrix M given by f(i,j)=(2i-1 if i=j and 1 otherwise) for i>=1 and j>=1. See A204132 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 1 1 1 1
1 3 1 1 1
1 1 5 1 1
1 1 1 7 1
1 1 1 1 9
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1; f[i_, i_] := 2*i - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204131 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204132 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204166 Symmetric matrix based on f(i,j)=ceiling[(i+j)/2], by antidiagonals.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

A204166 represents the matrix M given by f(i,j)=ceiling[(i+j)/2] for i>=1 and j>=1. See A204167 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 2 2 3 3 4 4 5
2 2 3 3 4 4 5 5
2 3 3 4 4 5 5 6
3 3 4 4 5 5 6 6
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Ceiling[(i + j)/2];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204166 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204167 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204018 Symmetric matrix based on f(i,j)=1+max(j mod i, i mod j), by antidiagonals.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 3, 1, 3, 2, 2, 3, 4, 4, 3, 2, 2, 3, 4, 1, 4, 3, 2, 2, 3, 4, 5, 5, 4, 3, 2, 2, 3, 4, 5, 1, 5, 4, 3, 2, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 2, 3, 4, 5, 6, 1, 6, 5, 4, 3, 2, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 2, 3, 4, 5, 6, 7, 1, 7, 6, 5, 4, 3, 2, 2, 3, 4, 5, 6, 7, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204018 represents the matrix M given by f(i,j)=max{1+(j mod i), 1+( i mod j)} for i>=1 and j>=1. See A204019 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 2 2 2 2 2
2 1 3 3 3 3
2 3 1 4 4 4
2 3 4 1 5 5
2 3 4 5 1 6
2 3 4 5 6 1
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1 + Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]   (* A204018 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                  (* A204019 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204019 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max{1+j mod i, 1+i mod j} (A204018).

Original entry on oeis.org

1, -1, -3, -2, 1, 8, 14, 3, -1, -21, -64, -40, -4, 1, 40, 266, 280, 90, 5, -1, 125, -930, -1671, -896, -175, -6, 1, -2940, 854, 8600, 7228, 2352, 308, 7, -1, 35035, 37744, -27334, -50164, -24594, -5376, -504, -8, 1, -372400
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). The least zero of p(n) is -n.
For n>1, the least zero of p(n) is exactly 1-n; the greatest, for p(1) to p(5) is represented by (1,3,5.701...,9.158...13.392...).
See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
 1....-1
-3....-2......1
 8.....14.....3....-1
-21...-64....-40...-4...1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1 + Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]   (* A204018 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                  (* A204019 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204023 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max(2i-1, 2j-1) (A204022).

Original entry on oeis.org

1, -1, -6, -4, 1, 20, 36, 9, -1, -56, -160, -120, -16, 1, 144, 560, 700, 300, 25, -1, -352, -1728, -3024, -2240, -630, -36, 1, 832, 4928, 11088, 11760, 5880, 1176, 49, -1, -1920, -13312, -36608, -50688, -36960
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
 1....-1
-6....-4.....1
 20....36....9.....-1
-56...-160..-120...-16....1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[2 i - 1, 2 j - 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204022 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204023 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204024 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min(i(i+1)/2, j(j+1)/2) (A106255).

Original entry on oeis.org

1, -1, 2, -4, 1, 6, -16, 10, -1, 24, -76, 70, -20, 1, 120, -428, 496, -224, 35, -1, 720, -2808, 3808, -2260, 588, -56, 1, 5040, -21096, 32152, -23008, 8140, -1344, 84, -1, 40320, -178848, 298688, -245560, 107328, -24772, 2772
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
1....-1
2....-4....1
6....-16...10...-1
24...-76...70...-20....1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[i (i + 1)/2, j (j + 1)/2];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]     (* A106255 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                    (* A204024 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204027 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of M (as in A204026), given by min(F(i+1),F(j+1)), where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, -1, 1, -3, 1, 1, -5, 6, -1, 2, -12, 21, -11, 1, 6, -40, 86, -70, 19, -1, 30, -212, 508, -510, 214, -32, 1, 240, -1756, 4482, -5056, 2646, -614, 53, -1, 3120, -23308, 61748, -74480, 44002, -12764, 1703, -87, 1, 65520, -495708, 1343084
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
1....-1
1....-3....1
1....-5....6....-1
2....-12...21...-11....1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[Fibonacci[i + 1], Fibonacci[j + 1]]
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204026 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204027 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204029 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j)=min(3i-2,3j-2) (A204028).

Original entry on oeis.org

1, -1, 3, -5, 1, 9, -21, 12, -1, 27, -81, 75, -22, 1, 81, -297, 378, -195, 35, -1, 243, -1053, 1701, -1260, 420, -51, 1, 729, -3645, 7128, -6885, 3402, -798, 70, -1, 2187, -12393, 28431, -33858, 22275, -7938, 1386, -92, 1, 6561
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
1....-1
3....-5....1
9....-21...12...-1
27...-81...75...-22....-11
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[3 i - 2, 3 j - 2];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204028 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204029 *)
    TableForm[Table[c[n], {n, 1, 10}]]
Previous Showing 11-20 of 73 results. Next