cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A211272 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 4, 4, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 4, 4, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 5, 5, 1, 1, 2, 2, 2, 2, 4, 4, 1, 1, 4, 4, 1, 1, 3, 3, 3, 3, 2, 2, 1, 1, 5, 5, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(24) counts these pairs: (1,12), (2,6), (3,4).
		

Crossrefs

Programs

  • Magma
    [0] cat [Ceiling(#Divisors( Floor(n/2))/2):n in [2..100]]; // Marius A. Burtea, Feb 07 2020
  • Maple
    [seq(ceil(numtheory:-tau(floor(n/2))/2),n=1..100)]; - Robert Israel, Feb 07 2020
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Formula

a(n) = ceiling(A000005(floor(n/2))/2). - Robert Israel, Feb 07 2020

A211273 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 15, 19, 22, 25, 28, 32, 35, 39, 43, 46, 49, 55, 57, 62, 66, 69, 73, 78, 82, 86, 90, 95, 98, 104, 106, 112, 117, 120, 125, 131, 133, 138, 143, 148, 152, 158, 161, 166, 172, 176, 179, 186, 189, 196, 200, 204, 209, 215, 219, 225, 229, 233
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(5) counts these pairs: (1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3)
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(2) corrected by Sean A. Irvine, Jan 22 2025

A211274 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= 3n.

Original entry on oeis.org

1, 3, 6, 9, 12, 16, 20, 24, 28, 33, 37, 43, 46, 52, 57, 62, 67, 72, 78, 84, 88, 95, 99, 107, 111, 117, 124, 130, 134, 142, 147, 154, 159, 166, 173, 179, 184, 191, 197, 206, 210, 218, 223, 231, 237, 243, 250, 259, 264, 271, 277, 286, 289, 299, 305, 313
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(4) counts these pairs: (1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3,), (3,4), (4,4).
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(3) corrected by Sean A. Irvine, Jan 22 2025

A211275 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 13, 15, 15, 16, 16, 19, 19, 20, 20, 22, 22, 24, 24, 27, 27, 28, 28, 31, 31, 32, 32, 35, 35, 37, 37, 39, 39, 40, 40, 44, 44, 46, 46, 48, 48, 50, 50, 53, 53, 54, 54, 58, 58, 59, 59, 62, 62, 64, 64, 66, 66, 68, 68
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

A211340 Number of integer pairs (x,y) such that 1

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 17, 23, 30, 38, 45, 53, 64, 74, 86, 97, 110, 123, 138, 154, 168, 186, 203, 220, 241, 261, 282, 302, 324, 348, 370, 396, 421, 448, 476, 501, 531, 558, 591, 622, 651, 684, 717, 753, 788, 821, 858, 894, 933, 973, 1014, 1054, 1093, 1135
Offset: 1

Views

Author

Clark Kimberling, Apr 08 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for y from 1 to N-1 do
      for x from 1 to y do
        r:= x^2 + y^2;
        if r > N^2 then break fi;
        t:= ceil(sqrt(r));
        V[t]:= V[t]+1
    od od:
    ListTools:-PartialSums(convert(V,list)); # Robert Israel, Jun 04 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x^2 + y^2, {x, a, b - 1}, {y, x, b}]] (* 1<=x<=y<=n *)
    c[n_, k_] := c[n, k] = Count[t[n], k]
    TableForm[Table[c[n, k], {n, 1, 7}, {k, 1, n^2}]]
    Table[c[n, n^2], {n, 1, z1}]    (* A046080 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n^2], {n, 1, z1/2}] (* A211340 *)

A211339 Number of integer pairs (x,y) such that 1 < x <= y <= n and x^2 + y^2 <= n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 19, 19, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 25, 25, 25, 26, 26, 26, 26, 27, 28, 29
Offset: 1

Views

Author

Clark Kimberling, Apr 08 2012

Keywords

Comments

Partial sums of A025426.
For a guide to related sequences, see A211266.

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x^2 + y^2, {x, a, b - 1}, {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    TableForm[Table[c[n, k], {n, 1, 10}, {k, 1, 2 n}]]
    Table[c[n, n], {n, 1, z1}]   (* A025426 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]  (* A211339 *)

Formula

a(n) = -1/2(-1 + floor(sqrt(n/2)))(floor(sqrt(n/2))) + Sum_{k=1..floor(sqrt(n/2))} floor(sqrt(n - k^2)). - Nicholas Stearns, Apr 03 2017

A335408 Diameter of nearest neighbor interchange distance for free 3-trees.

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 12, 15, 18, 21
Offset: 3

Views

Author

Martin R. Smith, Jun 06 2020

Keywords

Comments

a(n) is the maximum value of the nearest neighbor interchange distance between two unrooted binary trees with n leaves, obtained by evaluating the distance from one tree with each of the unlabeled n-leaf tree shapes (see A000672) to each labeled n-leaf tree (A001147) using the C script described in Li et al. (1996).
The known terms a(3),...,a(12) happen (coincidentally?) to match the first ten terms of A211266. However, it seems unlikely that the sequences will agree for ever.

References

  • Ming Li, John Tromp, and Louxin Zhang, Some notes on the nearest neighbour interchange distance, in Goos, G., Hartmanis, J., Leeuwen, J., Cai, J.-Y., and Wong, C. K., eds., "Computing and Combinatorics" 1090, Springer (Berlin, Heidelberg) (1996), 343-351. doi:10.1007/3-540-61332-3_168.

Crossrefs

Cf. A211266, which happens to have the same initial terms (offset by two). It is not clear whether this correspondence continues for higher terms.
A000672 gives the number of unrooted tree shapes on n leaves; A001147 gives the number of (labeled) unrooted trees.
Previous Showing 11-17 of 17 results.