Original entry on oeis.org
2, 11, 83, 699, 6252, 58106, 554633, 5399099, 53356322, 533627511, 5388927513, 54859837434, 562267554552, 5796123147756, 60047675871333, 624801952898619, 6526036790730942, 68395815476047901, 718992874207884953, 7578808590187108199
Offset: 1
Examples of superconguences:
a(5) - 2 = 6252 - 2 = 2*(5^5) == 0 (mod 5^5).
a(7) - 2 = 554633 - 2 = 3*(7^5)*11 == 0 (mod 7^5).
a(11) - 2 = 5388927513 - 2 = (11^5)*33461 == 0 (mod 11^5).
-
seq((1/2)*add((2*n^2 - k*n + k^2)/(n*(n + k)) * binomial(n, k)^2 * binomial(n + k, k), k = 0..n), n = 1..20);
-
f(n) = sum(k=0, n, binomial(n, k)^2 * binomial(n+k, k)); \\ A005258
a(n) = (f(n) + f(n-1))/2; \\ Michel Marcus, Apr 20 2022
Original entry on oeis.org
-9, -17, 99, 5167, 147491, 3937483, 105834699, 2907476527, 81702447651, 2342097382483, 68273597307599, 2018243113678027, 60365426282638091, 1823553517258576723, 55557712038989195099, 1705170989220937925167, 52672595030914982754851, 1636296525812843554700323
Offset: 0
a(11) - a(1) = 2018243113678027 + 17 = (2^2)*(3^2)*(11^5)*17*20476637 == 0 (mod 11^5).
Cf.
A005258,
A005259,
A212334,
A352655,
A357506,
A357507,
A357508,
A357509,
A357568,
A357569,
A357956,
A357957,
A357958,
A357959,
A357960.
-
seq(add(5*binomial(n,k)^2*binomial(n+k,k)^2 - 14*binomial(n,k)^2*binomial(n+k,k), k = 0..n), n = 0..20);
Original entry on oeis.org
3, 19, 327, 6931, 162503, 4072519, 107094207, 2919528211, 81819974343, 2343260407519, 68285241342827, 2018360803903111, 60366625228511423, 1823565812734012639, 55557838850469305327, 1705172303553678726931, 52672608711829111519943, 1636296668756812403477839, 51088496012515356589705107
Offset: 0
Cf.
A005258,
A005259,
A212334,
A352655,
A357567,
A357568,
A357569,
A357957,
A357958,
A357959,
A357960.
-
seq(add(5*binomial(n,k)^2*binomial(n+k,k)^2 - 2*binomial(n,k)^2* binomial(n+k,k), k = 0..n), n = 0..20);
# Alternatively:
a := n -> 5*hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1) - 2*hypergeom([1 + n, -n, -n], [1, 1], 1): seq(simplify(a(n)), n = 0..18); # Peter Luschny, Nov 01 2022
Original entry on oeis.org
11, 63, 659, 9727, 187511, 4304943, 109312739, 2941124607, 82033399631, 2345394917563, 68306797052879, 2018580243252847, 60368874298729631, 1823588997226603663, 55558079041172790659, 1705174802761490321407, 52672634815976274443711, 1636296942340074307669443
Offset: 1
Examples of supercongruences:
a(13) - a(1) = 60368874298729631 - 11 = (2^2)*3*5*(13^5)*131*20685869 == 0 (mod 13^5).
a(5^2) - a(5) = 51292638914356604042099497031437511 - 187511 = (2^4)*3*(5^10)* 37*72974432287*40526706713533 == 0 (mod 5^10).
-
seq( add( 5*binomial(n-1,k)^2*binomial(n+k-1,k)^2 + 2*binomial(n,k)^2* binomial(n+k,k), k = 0..n ), n = 1..20);
A208673
Number of words A(n,k), either empty or beginning with the first letter of the k-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 10, 1, 1, 1, 1, 9, 37, 35, 1, 1, 1, 1, 15, 163, 309, 126, 1, 1, 1, 1, 25, 640, 3593, 2751, 462, 1, 1, 1, 1, 41, 2503, 36095, 87501, 25493, 1716, 1, 1, 1, 1, 67, 9559, 362617, 2336376, 2266155, 242845, 6435, 1, 1
Offset: 0
A(0,0) = A(n,0) = A(0,k) = 1: the empty word.
A(2,3) = 5:
+------+ +------+ +------+ +------+ +------+
|aabbcc| |aabcbc| |aabccb| |ababcc| |abccba|
+------+ +------+ +------+ +------+ +------+
|122222| |122222| |122222| |112222| |111112|
|001222| |001122| |001112| |011222| |011122|
|000012| |000112| |000122| |000012| |001222|
+------+ +------+ +------+ +------+ +------+
|xx | |xx | |xx | |x x | |x x|
| xx | | x x | | x x| | x x | | x x |
| xx| | x x| | xx | | xx| | xx |
+------+ +------+ +------+ +------+ +------+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ..
1, 1, 1, 1, 1, 1, 1, ..
1, 1, 3, 5, 9, 15, 25, ..
1, 1, 10, 37, 163, 640, 2503, ..
1, 1, 35, 309, 3593, 36095, 362617, ..
1, 1, 126, 2751, 87501, 2336376, 62748001, ..
1, 1, 462, 25493, 2266155, 164478048, 12085125703, ..
-
b:= proc(t, l) option remember; local n; n:= nops(l);
`if`(n<2 or {0}={l[]}, 1,
`if`(l[t]>0, b(t, [seq(l[i]-`if`(i=t, 1, 0), i=1..n)]), 0)+
`if`(t0,
b(t+1, [seq(l[i]-`if`(i=t+1, 1, 0), i=1..n)]), 0)+
`if`(t>1 and l[t-1]>0,
b(t-1, [seq(l[i]-`if`(i=t-1, 1, 0), i=1..n)]), 0))
end:
A:= (n, k)-> `if`(n=0 or k=0, 1, b(1, [n-1, n$(k-1)])):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[t_, l_List] := b[t, l] = Module[{n = Length[l]}, If[n < 2 || {0} == Union[l], 1, If[l[[t]] > 0, b[t, Table[l[[i]] - If[i == t, 1, 0], {i, 1, n}]], 0] + If[t < n && l[[t + 1]] > 0, b[t + 1, Table[l[[i]] - If[i == t + 1, 1, 0], {i, 1, n}]], 0] + If[t > 1 && l[[t - 1]] > 0, b[t - 1, Table[l[[i]] - If[i == t - 1, 1, 0], {i, 1, n}]], 0]]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[1, Join[{n - 1}, Array[n&, k - 1]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
-
F(u)={my(n=#u); sum(k=1, n,u[k]*binomial(n-1,k-1))}
step(u, c)={my(n=#u); vector(n, k, sum(i=max(0, 2*k-c-n), k-1, sum(j=0, n-2*k+i+c, u[k-i+j]*binomial(n-1, 2*k-1-c-i+j)*binomial(k-1, k-i-1)*binomial(k-i+j-c, j) ))) }
R(n,k)={my(r=vector(n+1), u=vector(k), v=vector(k)); u[1]=v[1]=r[1]=r[2]=1; for(n=3, #r, u=step(u,1); v=step(v,0)+u; r[n]=F(v)); r}
T(n,k)={if(n==0||k==0, 1, R(k,n)[1+k])} \\ Andrew Howroyd, Feb 22 2022
Original entry on oeis.org
27, 20577, 60353937, 287798988897, 1782634331587527, 13011500170881726987, 106321024671550496694837, 943479109706472533832704097, 8916177779855571182824077866307, 88547154924474394601268826256953077, 915376390434997094066775480671975209017
Offset: 1
Example of a supercongruence:
a(7) - a(1) = 106321024671550496694837 - 27 = 2*(3^3)*5*(7^5)* 11*18143* 117398731273 == 0 (mod 7^5)
-
A005258 := n -> add(binomial(n,k)^2*binomial(n+k,k), k = 0..n):
seq(A005258(n)^3*A005258(n-1), n = 1..20);
Original entry on oeis.org
3125, 161958718203125, 69598400094777710760545478125, 514885225734532980507136994998009584838203125, 15708056924221066705174364772957342407662356116035885781253125, 1125221282019374727979322420623179115437017599670596496532725068048858642578125
Offset: 1
Cf.
A005259,
A212334,
A339946,
A352655,
A357506,
A357508,
A357509,
A357567,
A357568,
A357569,
A357956,
A357957,
A357958,
A357959.
-
A005259 := n -> add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n):
seq(A005259(n)^5 * A005259(n-1)^7, n = 1..10);
Original entry on oeis.org
39, 407, 7491, 167063, 4112539, 107461667, 2923006251, 81853622423, 2343591359499, 68288538877907, 2018394003648391, 60366962358086243, 1823569260750104179, 55557874330437332267, 1705172670555862322491, 52672612525369663916183
Offset: 1
Examples of supercongruences:
a(13) - a(1) = 1823569260750104179 - 39 = (2^2)*5*7*(13^5)*35081444357 == 0 (mod 13^5).
a(7^2) - a(7) = (2^3)*(7^9)* 10412078726049425470554760052126170543547100055154203726400782433 == 0 (mod 7^9).
-
seq( add( 5*binomial(n,k)^2*binomial(n+k,k)^2 + 14*binomial(n-1,k)^2* binomial(n+k-1,k), k = 0..n ), n = 1..20);
A361712
a(n) = Sum_{k = 0..n-1} binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k).
Original entry on oeis.org
0, 1, 25, 649, 16921, 448751, 12160177, 336745053, 9513822745, 273585035755, 7988828082775, 236367018090017, 7072779699975601, 213701611408357567, 6511338458568750853, 199850727914988936149, 6173376842290368719385, 191776434791965521115235, 5987554996434696230487955
Offset: 0
a(7) - a(1) = (2^2)*(7^5)*5009 == 0 (mod 7^5)
a(11) - a(1) = (2^5)*(11^5)*45864163 == 0 (mod 11^5)
a(7^2) - a(7) = (2*3)*(7^9)*377052719*240136524699189343838527* 17965610580703155723668147409587 == 0 (mod 7^9)
-
seq(add(binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k), k = 0..n-1), n = 0..25);
# Alternative:
A361712 := n -> hypergeom([-n, -n, n, n + 1], [1, 1, 1], 1) - binomial(2*n, n)*binomial(2*n-1, n): seq(simplify(A361712(n)), n = 0..18); # Peter Luschny, Mar 27 2023
-
A361712[n_] := HypergeometricPFQ[{-n, -n, n, n+1}, {1, 1, 1}, 1] - Binomial[2*n, n]*Binomial[2*n-1, n]; Array[A361712, 20, 0] (* Paolo Xausa, Jul 10 2024 *)
Original entry on oeis.org
0, 3116, 2073071232, 6299980938881516, 39141322964380888600000, 368495989505416178203682748116, 4552312485541626792249211584618373944, 68109360474242016374599574592870648425552876, 1174806832391451114413440151405736019461523615095744
Offset: 0
a(7) = 4552312485541626792249211584618373944 = (2^3)*(3^3)*(7^5)*29*107* 404116272977592231282158029 == 0 (mod 7^5).
Cf.
A005258,
A005259,
A212334,
A352655,
A357567,
A357568,
A357569,
A357956,
A357958,
A357959,
A357960.
-
seq(add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n)^5 - add(binomial(n,k)^2*binomial(n+k,k), k = 0..n)^2, n = 0..20);
# Alternatively:
a := n -> hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1)^5 - hypergeom([1 + n, -n, -n], [1, 1], 1)^2: seq(simplify(a(n)), n=0..8); # Peter Luschny, Nov 01 2022
Showing 1-10 of 14 results.
Comments