A212860
Number of 7 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 127, 275563, 4479288703, 347190069843751, 96426023622482278621, 78785944892341703819175577, 163925632052722656731213188429183, 777880066963402408939826643081996101263, 7717574897043522397037273525233635595811018377
Offset: 0
Some solutions for n=3:
0 1 2 0 1 2 0 2 1 0 1 2 0 2 1 0 2 1 0 2 1
1 2 0 0 2 1 0 2 1 1 0 2 0 2 1 1 0 2 2 1 0
1 0 2 2 1 0 2 0 1 0 1 2 2 0 1 1 0 2 1 2 0
0 2 1 1 0 2 0 2 1 1 0 2 0 1 2 2 0 1 0 1 2
2 0 1 2 1 0 1 0 2 2 1 0 1 2 0 0 1 2 1 2 0
2 1 0 0 1 2 1 0 2 0 1 2 2 0 1 1 0 2 2 1 0
1 2 0 2 1 0 0 1 2 0 2 1 2 1 0 2 0 1 2 0 1
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859.
-
A212860 := proc(n) sum(z^k/k!^7, k = 0..infinity);
series(%^x, z=0, n+1): n!^7*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212860(n), n=1..10); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[7, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A325305
Irregular triangular array, read by rows: T(n,k) is the sum of the products of distinct multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A070289(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11271
Offset: 0
Triangle begins as follows:
[n=0]: 1, 1;
[n=1]: 1, 1;
[n=2]: 1, 3, 2;
[n=3]: 1, 10, 27, 18;
[n=4]: 1, 47, 718, 4416, 10656, 6912;
[n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. They are all distinct. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Consider the list [1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040] of the A070289(7) = 15 - 1 = 14 distinct multinomial coefficients corresponding to the 15 integer partitions of 7. Then T(7,0) = 1, T(7,1) = 11271 (sum of the coefficients), T(7,2) = 46169368 (sum of products of every two different coefficients), T(7,3) = 92088653622 (sum of products of every three different coefficients), and so on. Finally, T(7,14) = 2372695722072874920960000000000 = product of these coefficients.
- Alois P. Heinz, Rows n = 0..15, flattened
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248.
- Wikipedia, Partition (number theory).
Cf.
A000012 (column k=0),
A000041,
A005651,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212855,
A212856,
A309951,
A309972,
A325308 (column k=1).
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [{map(x->
binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]}[]])
end:
b:= proc(n, m) option remember; `if`(n=0, 1,
expand(b(n-1, m)*(g(m$2)[n]*x+1)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
seq(T(n), n=0..7); # Alois P. Heinz, Sep 05 2019
-
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, {n!}, Union[Map[Function[x, Binomial[n, i] x], g[n - i, Min[n - i, i]]], g[n, i - 1]]];
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m] (g[m, m][[n]] x + 1)];
T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, May 06 2020, after Maple *)
A212806
Number of n X n matrices in which each row is a permutation of [1..n] and which contain no column rises.
Original entry on oeis.org
1, 3, 163, 271375, 21855093751, 128645361626874561, 78785944892341703819175577, 6795588328283070704898044776213094655, 107414633522643325764587104395687638119674465944431, 392471529081605251407320880492124164530148025908765037878553312273, 407934916447631403509359040563002566177814886353044858592046202746464825839911293037
Offset: 1
For n=2 the three matrices are [12/21], [21/12], [21/21] (but not [12/12]).
From _Petros Hadjicostas_, Aug 26 2019: (Start)
For example, when n = 3, the integer partitions of 3 are 3, 1+2, and 1+1+1, with corresponding (b_1, b_2, b_3) notation (0,0,1), (1,1,0), and (3,0,0). The corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!*2!) = 3, and 3!/(1!*1!*1!) = 6, while the corresponding quantities (b_1 + b_2 + b_3)!/(b_1!*b_2!*b_3!) are 1, 2, and 1. The corresponding exponents of -1 (i.e., n - Sum_{j=1..n} b_j) are 3 - (0+0+1) = 2, 3 - (1+1+0) = 1, and 3 - (3+0+0) = 0.
It follows that a(n) = (-1)^2 * 1 * 1^3 + (-1)^1 * 2 * 3^3 + (-1)^0 * 1 * 6^3 = 163.
(End)
- Alois P. Heinz, Table of n, a(n) for n = 1..30 (first 18 terms from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554). [Their a(5) on p. 250 is wrong; see A212845.]
- Wikipedia, Partition (number theory).
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859,
A212860,
A309951,
A325305.
-
A212806 := proc(n) sum(z^k/k!^n, k=0..infinity);
series(%^x, z=0, n+1): n!^n*coeff(%,z,n); add(abs(coeff(%,x,k)),k=0..n) end:
seq(A212806(n), n=1..11); # Peter Luschny, May 27 2017
-
a[n_] := Module[{s0, s1, s2}, s0 = Sum[z^k/k!^n, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n + 1}] // Normal; s2 = n!^n*Coefficient[s1, z, n]; Sum[Abs[Coefficient[s2, x, k]], {k, 0, n}]]; Array[a, 11] (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
a[n_] := T[n, n];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A287696
Triangle read by rows, T(n,k) = (n!)^3 * [x^k] [z^n] hypergeom([], [1, 1], z)^x for n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -3, 4, 0, 46, -81, 36, 0, -1899, 3916, -2592, 576, 0, 163476, -375375, 305500, -108000, 14400, 0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400, 0, 6412369860, -16976577828, 17470973569, -9168390000, 2636298000, -400075200, 25401600
Offset: 0
0: [1]
1: [0, 1]
2: [0, -3, 4]
3: [0, 46, -81, 36]
4: [0, -1899, 3916, -2592, 576]
5: [0, 163476, -375375, 305500, -108000, 14400]
6: [0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400]
-
A287696_row := proc(n) local k; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
n!^3*coeff(%, z, n); seq(coeff(%, x, k), k=0..n) end:
for n from 0 to 8 do A287696_row(n) od;
A287696_poly := proc(n) local k, x; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
unapply(n!^3*coeff(%, z, n), x); end:
for n from 0 to 7 do A287696_poly(n) od;
-
T[n_, k_] := (n!)^3 SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, z]^x, {x, 0, k}, {z, 0, n}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 13 2017 *)
A334394
Triangle read by rows: T(n,k) is the number of ordered triples of n-permutations with exactly k common descents, n>=0, 0<=k<=max(0,n-1).
Original entry on oeis.org
1, 1, 7, 1, 163, 52, 1, 8983, 4499, 341, 1, 966751, 660746, 98256, 2246, 1, 179781181, 155729277, 35677082, 2045282, 15177, 1, 53090086057, 55690144728, 17446464519, 1754605504, 42658239, 104952, 1, 23402291822743, 28825420903351, 11518335730323, 1717307782339, 84058424389, 905365701, 739153, 1
Offset: 0
Triangle begins:
1;
1;
7, 1;
163, 52, 1;
8983, 4499, 341, 1;
966751, 660746, 98256, 2246, 1;
...
- R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.
-
T:= (n, k)-> n!^3*coeff(series(coeff(series((y-1)/(y-add((x*
(y-1))^j/j!^3, j=0..n)), y, k+1), y, k), x, n+1), x, n):
seq(seq(T(n,k), k=0..max(0, n-1)), n=0..10); # Alois P. Heinz, Apr 28 2020
-
nn = 6; e3[x_] := Sum[x^n/n!^3, {n, 0, nn}];Drop[Map[Select[#, # > 0 &] &,
Table[n!^3, {n, 0, nn}] CoefficientList[Series[(y - 1)/(y - e3[x (y - 1)]), {x, 0, nn}], {x, y}]], 1] // Grid
A337676
a(0) = 1; a(n) = -(n!)^3 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^3.
Original entry on oeis.org
1, -1, 7, -170, 9664, -1080824, 207876968, -63709383408, 29068641741312, -18924533538121728, 16870738405288439808, -20048074289311310521344, 30889296893650981899202560, -60580966918820974514054369280, 148238116513927185591120536580096
Offset: 0
-
a[0] = 1; a[n_] := a[n] = -(n!)^3 Sum[a[k]/(k! (n - k))^3, {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
nmax = 14; CoefficientList[Series[1/(1 + PolyLog[3, x]), {x, 0, nmax}], x] Range[0, nmax]!^3
-
a(n)={n!^3*polcoef(1/(1 + polylog(3,x + O(x*x^n))), n)} \\ Andrew Howroyd, Sep 15 2020
A287697
Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287698.
Original entry on oeis.org
1, 0, 1, 0, 1, 7, 0, 1, 52, 163, 0, 1, 341, 4499, 8983, 0, 1, 2246, 98256, 660746, 966751, 0, 1, 15177, 2045282, 35677082, 155729277, 179781181, 0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1, 7]
3: [0, 1, 52, 163]
4: [0, 1, 341, 4499, 8983]
5: [0, 1, 2246, 98256, 660746, 966751]
6: [0, 1, 15177, 2045282, 35677082, 155729277, 179781181]
7: [0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057]
...
Let q4(x) = (x + 341*x^2 + 4499*x^3 + 8983*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 are column 4 of A287698.
A216207
Matrix inverse of A181543 (cubes of entries of Pascal's triangle).
Original entry on oeis.org
1, -1, 1, 7, -8, 1, -163, 189, -27, 1, 8983, -10432, 1512, -64, 1, -966751, 1122875, -163000, 7000, -125, 1, 179781181, -208818216, 30317625, -1304000, 23625, -216, 1, -53090086057, 61664945083, -8953081011, 385146125, -6988625, 64827, -343, 1, 23402291822743, -27182124061184, 3946556485312, -169776943616, 3081169000, -28625408, 153664, -512, 1
Offset: 0
1;
-1,1;
7,-8,1;
-163,189,-27,1;
8983,-10432,1512,-64,1;
-966751,1122875,-163000,7000,-125,1;
179781181,-208818216,30317625,-1304000,23625,-216,1;
Comments