cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A059908 a(n) = |{m : multiplicative order of n mod m = 3}|.

Original entry on oeis.org

0, 1, 2, 4, 3, 2, 8, 2, 12, 5, 12, 2, 12, 2, 4, 20, 5, 6, 10, 2, 6, 14, 12, 2, 40, 9, 4, 6, 18, 10, 16, 6, 6, 8, 12, 12, 39, 2, 12, 8, 8, 6, 16, 6, 18, 26, 12, 6, 50, 3, 18, 8, 18, 2, 32, 12, 8, 20, 4, 6, 60, 2, 12, 26, 21, 4, 64, 10, 6, 8, 8, 6, 20, 14, 4, 12, 6, 4, 64, 2, 70, 7, 12, 6, 24
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{7}| = 1, a(3) = |{13,26}| = 2, a(4) = |{7,9,21,63}| = 4, a(5) = |{31,62,124}| = 3, a(6) = |{43,215}| = 2, a(7) = |{9,18,19,38,57,114,171,342}| = 8,...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,n^3-1]-DivisorSigma[0,n-1],{n,90}] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^3-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^3-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A218336 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(11) listed in ascending order.

Original entry on oeis.org

1, 2, 5, 10, 3, 4, 6, 8, 12, 15, 20, 24, 30, 40, 60, 120, 7, 14, 19, 35, 38, 70, 95, 133, 190, 266, 665, 1330, 16, 48, 61, 80, 122, 183, 240, 244, 305, 366, 488, 610, 732, 915, 976, 1220, 1464, 1830, 2440, 2928, 3660, 4880, 7320, 14640, 25, 50, 3221, 6442
Offset: 1

Views

Author

Alois P. Heinz, Oct 26 2012

Keywords

Examples

			Triangle begins:
   1,  2,    5,   10;
   3,  4,    6,    8,    12,    15,    20,     24,  30,  40, ...
   7, 14,   19,   35,    38,    70,    95,    133, 190, 266, ...
  16, 48,   61,   80,   122,   183,   240,    244, 305, 366, ...
  25, 50, 3221, 6442, 16105, 32210, 80525, 161050;
  ...
		

Crossrefs

Column k=5 of A212737.
Last elements of rows give: A024127.
Column k=1 gives: A218359.
Row lengths are A212957(n,11).

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(11^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..5);
  • Mathematica
    M[n_] := M[n] = Divisors[11^n - 1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(11^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.

A218337 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(13) listed in ascending order.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 7, 8, 14, 21, 24, 28, 42, 56, 84, 168, 9, 18, 36, 61, 122, 183, 244, 366, 549, 732, 1098, 2196, 5, 10, 15, 16, 17, 20, 30, 34, 35, 40, 48, 51, 60, 68, 70, 80, 85, 102, 105, 112, 119, 120, 136, 140, 170, 204, 210, 238, 240, 255, 272, 280, 336
Offset: 1

Views

Author

Alois P. Heinz, Oct 26 2012

Keywords

Examples

			Triangle begins:
:     1,     2,     3,      4,      6,     12;
:     7,     8,    14,     21,     24,     28,  42,  56,  84, 168;
:     9,    18,    36,     61,    122,    183, 244, 366, 549, ...
:     5,    10,    15,     16,     17,     20,  30,  34,  35, ...
: 30941, 61882, 92823, 123764, 185646, 371292;
		

Crossrefs

Column k=6 of A212737.
Column k=1 gives: A218360.
Row lengths are A212957(n,13).

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(13^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..5);
  • Mathematica
    M[n_] := Divisors[13^n-1] ~Complement~ U[n-1]; U[n_] := If[n == 0, {}, M[n] ~Union~  U[n-1]]; T[n_] := Sort[M[n]]; Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(13^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.

A218338 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(17) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 8, 16, 3, 6, 9, 12, 18, 24, 32, 36, 48, 72, 96, 144, 288, 307, 614, 1228, 2456, 4912, 5, 10, 15, 20, 29, 30, 40, 45, 58, 60, 64, 80, 87, 90, 116, 120, 145, 160, 174, 180, 192, 232, 240, 261, 290, 320, 348, 360, 435, 464, 480, 522, 576, 580, 696, 720
Offset: 1

Views

Author

Alois P. Heinz, Oct 26 2012

Keywords

Examples

			Triangle begins:
      1,      2,      4,      8,      16;
      3,      6,      9,     12,      18,  24, 32, 36, 48, 72, ...
    307,    614,   1228,   2456,    4912;
      5,     10,     15,     20,      29,  30, 40, 45, 58, 60, ...
  88741, 177482, 354964, 709928, 1419856;
		

Crossrefs

Column k=7 of A212737.
Column k=1 gives: A218361.
Row lengths are A212957(n,17).

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(17^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..5);
  • Mathematica
    M[n_] := M[n] = Divisors[17^n-1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(17^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.

A218339 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(19) listed in ascending order.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 4, 5, 8, 10, 12, 15, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360, 27, 54, 127, 254, 381, 762, 1143, 2286, 3429, 6858, 16, 48, 80, 144, 181, 240, 362, 543, 720, 724, 905, 1086, 1448, 1629, 1810, 2172, 2715, 2896, 3258, 3620, 4344, 5430
Offset: 1

Views

Author

Alois P. Heinz, Oct 26 2012

Keywords

Examples

			Triangle begins:
    1,   2,   3,   6,   9,   18;
    4,   5,   8,  10,  12,   15,   20,   24,   30,   36,   40, ...
   27,  54, 127, 254, 381,  762, 1143, 2286, 3429, 6858;
   16,  48,  80, 144, 181,  240,  362,  543,  720,  724,  905, ...
  151, 302, 453, 906, 911, 1359, 1822, 2718, 2733, 5466, 8199, ...
  ...
		

Crossrefs

Column k=8 of A212737.
Column k=1 gives: A218362.
Row lengths are A212957(n,19).

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(19^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..5);
  • Mathematica
    M[n_] := M[n] = Divisors[19^n-1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(19^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.

A218340 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(23) listed in ascending order.

Original entry on oeis.org

1, 2, 11, 22, 3, 4, 6, 8, 12, 16, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528, 7, 14, 77, 79, 154, 158, 553, 869, 1106, 1738, 6083, 12166, 5, 10, 15, 20, 30, 32, 40, 53, 55, 60, 80, 96, 106, 110, 120, 159, 160, 165, 212, 220, 240, 265, 318, 330, 352, 424, 440
Offset: 1

Views

Author

Alois P. Heinz, Oct 26 2012

Keywords

Examples

			Triangle begins:
       1,      2,      11,      22;
       3,      4,       6,       8,  12,  16,  24,  33,   44, ...
       7,     14,      77,      79, 154, 158, 553, 869, 1106, ...
       5,     10,      15,      20,  30,  32,  40,  53,   55, ...
  292561, 585122, 3218171, 6436342;
  ...
		

Crossrefs

Column k=9 of A212737.
Column k=1 gives: A218363.
Row lengths are A212957(n,23).

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(23^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..5);
  • Mathematica
    M[n_] := M[n] = Divisors[23^n-1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(23^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.

A218341 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(29) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 7, 14, 28, 3, 5, 6, 8, 10, 12, 15, 20, 21, 24, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840, 13, 26, 52, 67, 91, 134, 182, 268, 364, 469, 871, 938, 1742, 1876, 3484, 6097, 12194, 24388, 16, 48, 80, 112, 240, 336, 421, 560
Offset: 1

Views

Author

Alois P. Heinz, Oct 26 2012

Keywords

Examples

			Triangle begins:
       1,       2,       4,       7,       14,       28;
       3,       5,       6,       8,       10,       12,  15, ...
      13,      26,      52,      67,       91,      134, 182, ...
      16,      48,      80,     112,      240,      336, 421, ...
  732541, 1465082, 2930164, 5127787, 10255574, 20511148;
  ...
		

Crossrefs

Column k=10 of A212737.
Column k=1 gives: A218364.
Row lengths are A212957(n,29).

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(29^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..5);
  • Mathematica
    M[n_] := M[n] = Divisors[29^n-1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(29^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.

A218256 a(n) = |{m : multiplicative order of n mod m = 7}|.

Original entry on oeis.org

0, 1, 2, 6, 3, 2, 12, 10, 12, 9, 12, 6, 6, 2, 8, 60, 5, 6, 18, 14, 42, 8, 12, 14, 56, 3, 12, 12, 12, 14, 8, 14, 18, 12, 12, 44, 27, 2, 12, 4, 24, 6, 40, 14, 42, 6, 12, 6, 150, 5, 18, 60, 18, 14, 24, 4, 40, 12, 60, 2, 12, 6, 12, 138, 49, 4, 24, 2, 18, 12, 40, 2
Offset: 1

Views

Author

Alois P. Heinz, Oct 24 2012

Keywords

Crossrefs

Row n=7 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(7/d) *tau(n^d-1), d={1, 7}):
    seq(a(n), n=1..80);
  • Mathematica
    a[n_] := Subtract @@ DivisorSigma[0, {n^7-1, n-1}]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^7-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^7-1)-tau(n-1), with tau = A000005.

A218257 a(n) = |{m : multiplicative order of n mod m = 8}|.

Original entry on oeis.org

0, 4, 14, 8, 28, 8, 48, 72, 88, 36, 56, 48, 112, 48, 100, 16, 108, 72, 228, 16, 112, 96, 128, 12, 176, 72, 304, 32, 112, 48, 448, 144, 224, 64, 84, 48, 456, 144, 64, 48, 528, 48, 2064, 336, 152, 48, 800, 24, 300, 144, 228, 96, 608, 16, 704, 32, 256, 96, 688
Offset: 1

Views

Author

Alois P. Heinz, Oct 24 2012

Keywords

Crossrefs

Row n=8 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(8/d) *tau(n^d-1), d={4, 8}):
    seq(a(n), n=1..80);
  • Mathematica
    a[n_] := Subtract @@ DivisorSigma[0, {n^8-1, n^4-1}]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^8-1) - numdiv(n^4-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^8-1)-tau(n^4-1), with tau = A000005.

A218258 a(n) = |{m : multiplicative order of n mod m = 9}|.

Original entry on oeis.org

0, 2, 4, 26, 18, 12, 52, 4, 112, 12, 16, 12, 30, 12, 24, 488, 30, 24, 64, 4, 12, 78, 48, 28, 464, 12, 56, 62, 72, 12, 104, 56, 36, 52, 48, 112, 432, 28, 48, 52, 48, 24, 488, 56, 72, 288, 48, 24, 580, 6, 24, 116, 360, 44, 344, 16, 48, 104, 24, 8, 312, 44, 112
Offset: 1

Views

Author

Alois P. Heinz, Oct 24 2012

Keywords

Crossrefs

Row n=9 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(9/d) *tau(n^d-1), d={3, 9}):
    seq(a(n), n=1..80);
  • Mathematica
    Table[DivisorSigma[0,n^9-1]-DivisorSigma[0,n^3-1],{n,70}] (* Harvey P. Dale, Mar 15 2018 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^9-1) - numdiv(n^3-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^9-1)-tau(n^3-1), with tau = A000005.
Previous Showing 11-20 of 22 results. Next