cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A213391 Number of (w,x,y) with all terms in {0,...,n} and 2*max(w,x,y) < 3*min(w,x,y).

Original entry on oeis.org

0, 1, 2, 3, 10, 17, 24, 43, 62, 81, 118, 155, 192, 253, 314, 375, 466, 557, 648, 775, 902, 1029, 1198, 1367, 1536, 1753, 1970, 2187, 2458, 2729, 3000, 3331, 3662, 3993, 4390, 4787, 5184, 5653, 6122, 6591, 7138, 7685, 8232, 8863, 9494, 10125
Offset: 0

Views

Author

Clark Kimberling, Jun 11 2012

Keywords

Comments

For a guide to related sequences, see A212959.
Also the number of (w,x,y) with all terms in {0,...,n-1} and 2*max(w,x,y) <= 3*min(w,x,y).

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[2*Max[w, x, y] < 3*Min[w, x, y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 45]]   (* A213391 *)

Formula

a(n) + A213392(n) = (n+1)^3.
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) - a(n-5) + 2*a(n-6) - a(n-7).
G.f.: (x + 4*x^4 + x^7)/(((1 - x)^4)*(1 + x + x^2)^2).
a(n) = (n^3 + 6*n*(((n+1) mod 3 + 1) mod 2) - 2 + 2*((n+1) mod 3))/9. - Ayoub Saber Rguez, Feb 01 2022
From Jon E. Schoenfield, Feb 02 2022: (Start)
a(n) = n^3/9 if n == 0 (mod 3),
(n^3 + 6*n + 2)/9 if n == 1 (mod 3),
(n^3 + 6*n - 2)/9 if n == 2 (mod 3).
(End)

A213482 Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| > w+x+y.

Original entry on oeis.org

0, 3, 14, 41, 87, 161, 265, 409, 594, 831, 1120, 1473, 1889, 2381, 2947, 3601, 4340, 5179, 6114, 7161, 8315, 9593, 10989, 12521, 14182, 15991, 17940, 20049, 22309, 24741, 27335, 30113, 33064, 36211, 39542, 43081, 46815, 50769, 54929
Offset: 0

Views

Author

Clark Kimberling, Jun 13 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w + x + y > Abs[w - x] + Abs[x - y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    Map[t[#] &, Range[0, 60]]   (* A213482 *)

Formula

a(n) + A213483(n) = (n+1)^3.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: (3*x + 8*x^2 + 10*x^3 + 3*x^4 - x^5)/((1 - x)^4*(1 + x)^2).
From Ayoub Saber Rguez, Dec 29 2021: (Start)
a(n) = A213481(n) - A213479(n).
a(n) = (23*n^3 + 39*n^2 + n + 9 - (3*n+9)*((n+1) mod 2))/24. (End)

A213484 Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| + |y-w| >= w+x+y.

Original entry on oeis.org

1, 4, 7, 10, 16, 25, 34, 43, 55, 70, 85, 100, 118, 139, 160, 181, 205, 232, 259, 286, 316, 349, 382, 415, 451, 490, 529, 568, 610, 655, 700, 745, 793, 844, 895, 946, 1000, 1057, 1114, 1171, 1231, 1294, 1357, 1420, 1486, 1555, 1624, 1693, 1765
Offset: 0

Views

Author

Clark Kimberling, Jun 13 2012

Keywords

Comments

a(n) + A213485(n) = (n+1)^3.
For a guide to related sequences, see A212959.

Crossrefs

Cf. A212959.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w + x + y == Abs[w - x] + Abs[x - y] + Abs[y - w],
    s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    Map[t[#] &, Range[0, 60]]   (* A213484 *)

Formula

a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5).
G.f.: (1 + x - x^2 + x^3 + x^4)/((1 - x)^3 (1 + x^2)).
From Ayoub Saber Rguez, Dec 31 2021: (Start)
a(n) + A213485(n) = (n+1)^3.
a(n) = 3*A054925(n+1) + 1.
a(n) = 3*(A192447(n+1)/2) + 1.
a(n) = (3*n^2 + 3*n + 4 + 3*((n+1) mod 4 - (n+1) mod 2))/4. (End)

A238410 a(n) = floor((3(n-1)^2 + 1)/2).

Original entry on oeis.org

0, 2, 6, 14, 24, 38, 54, 74, 96, 122, 150, 182, 216, 254, 294, 338, 384, 434, 486, 542, 600, 662, 726, 794, 864, 938, 1014, 1094, 1176, 1262, 1350, 1442, 1536, 1634, 1734, 1838, 1944, 2054, 2166, 2282, 2400, 2522, 2646, 2774, 2904, 3038, 3174, 3314, 3456, 3602, 3750, 3902, 4056, 4214, 4374, 4538, 4704
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2014

Keywords

Comments

a(n) = the eccentric connectivity index of the path P[n] on n vertices. The eccentric connectivity index of a simple connected graph G is defined to be the sum over all vertices i of G of the product E(i)D(i), where E(i) is the eccentricity and D(i) is the degree of vertex i. For example, a(4)=14 because the vertices of P[4] have degrees 1,2,2,1 and eccentricities 3,2,2,3; we have 1*3 + 2*2 + 2*2 + 1*3 = 14.
From Paul Curtz, Feb 23 2023: (Start)
East spoke of the hexagonal spiral using A004526 with a single 0:
.
43 42 42 41 41 40
43 28 28 27 27 26 40
44 29 17 16 16 15 26 39
44 29 17 8 8 7 15 25 39
45 30 18 9 3 2 7 14 25 38
45 30 18 9 3 0---2---6--14--24--38-->
31 19 10 4 1 1 6 13 24 37
31 19 10 4 5 5 13 23 37
32 20 11 11 12 12 23 36
32 20 21 21 22 22 36
33 33 34 34 35 35
.

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: floor((3/2)*(n-1)^2+1/2) end proc: seq(a(n), n = 1 .. 70);
  • Mathematica
    Table[Floor[(3(n-1)^2+1)/2],{n,80}]  (* or *) LinearRecurrence[{2,0,-2,1},{0,2,6,14},80] (* Harvey P. Dale, Apr 30 2022 *)
  • PARI
    a(n)=(3*(n-1)^2 + 1)\2 \\ Charles R Greathouse IV, Feb 15 2017

Formula

a(n) = (3*n)^2/6 for n even and a(n) = ((3*n)^2 + 3)/6 for n odd. - Miquel Cerda, Jun 17 2016
From Ilya Gutkovskiy, Jun 17 2016: (Start)
G.f.: 2*x^2*(1 + x + x^2)/((1 - x)^3*(1 + x)).
a(n) = (6*n^2 - 12*n + 7 + (-1)^n)/4.
a(n) = 2* A077043(n-1). (End)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Matthew House, Feb 15 2017
Sum_{n>=2} 1/a(n) = Pi^2/36 + tanh(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Mar 12 2023

A212967 Number of (w,x,y) with all terms in {0,...,n} and w < range{w,x,y}.

Original entry on oeis.org

0, 3, 10, 26, 50, 89, 140, 212, 300, 415, 550, 718, 910, 1141, 1400, 1704, 2040, 2427, 2850, 3330, 3850, 4433, 5060, 5756, 6500, 7319, 8190, 9142, 10150, 11245, 12400, 13648, 14960, 16371, 17850, 19434, 21090, 22857, 24700, 26660, 28700
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • GAP
    List([1..45],n->Sum([1..n],k->(10*k*(k-1)+(2*k-1)*(-1)^k+1)/8)); # Muniru A Asiru, Nov 28 2018
    
  • Magma
    [(n+1)*(10*n*(n+2) - 3*(-1)^n+3)/24: n in [0..50]]; // Vincenzo Librandi, Nov 29 2018
  • Maple
    A212967:=n->(n+1)*(10*n*(n+2)-3*(-1)^n+3)/24: seq(A212967(n), n=0..100); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w < (Max[w, x, y] - Min[w, x, y]), s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    Map[t[#] &, Range[0, 60]]   (* A212967 *)
    Accumulate[Accumulate[Table[n + LCM[n, 2], {n, 0, 60}]]] (* Jon Maiga, Nov 28 2018 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 3, 10, 26, 50, 89}, 50] (* Vincenzo Librandi, Nov 29 2018 *)

Formula

a(n) + A212968(n) = (n + 1)^3.
a(n) = (n + 1)*(10*n*(n + 2) - 3*(-1)^n + 3)/24.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(3 + 4*x + 3*x^2) and g(x) = ((1 - x)^4)(1 + x)^2.
a(n) = Sum_{k=1..n} A036666(k). - Jon Maiga, Nov 28 2018
E.g.f.: (exp(x)*(3 + 63*x + 60*x^2 + 10*x^3) - 3*exp(-x)*(1 - x))/24. - Franck Maminirina Ramaharo, Nov 29 2018

A212968 Number of (w,x,y) with all terms in {0,...,n} and w>=range{w,x,y}.

Original entry on oeis.org

1, 5, 17, 38, 75, 127, 203, 300, 429, 585, 781, 1010, 1287, 1603, 1975, 2392, 2873, 3405, 4009, 4670, 5411, 6215, 7107, 8068, 9125, 10257, 11493, 12810, 14239, 15755, 17391, 19120, 20977, 22933, 25025, 27222, 29563, 32015, 34619, 37340
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

a(n)+A212967(n) = (n+1)^3.
For a guide to related sequences, see A212959.

Crossrefs

Cf. A212959.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w >= (Max[w, x, y] - Min[w, x, y]), s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    Map[t[#] &, Range[0, 60]]   (* A212968 *)

Formula

a(n) = (n+1)*(14*n*(n+2)+3*(-1)^n+21)/24.
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
G.f.: f(x)/g(x), where f(x) = 1 + 3*x + 6*x^2 + 3*x^3 + x^4 and g(x) = ((1-x)^4)(1+x)^2.

A212969 Number of (w,x,y) with all terms in {0,...,n} and w != x and x > range(w,x,y).

Original entry on oeis.org

0, 0, 2, 10, 26, 56, 100, 166, 252, 368, 510, 690, 902, 1160, 1456, 1806, 2200, 2656, 3162, 3738, 4370, 5080, 5852, 6710, 7636, 8656, 9750, 10946, 12222, 13608, 15080, 16670, 18352, 20160, 22066, 24106, 26250, 28536, 30932, 33478, 36140
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w != x > (Max[w, x, y] - Min[w, x, y]),
      s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212969 *)
    m/2 (* integers *)

Formula

a(n) = (n-1)*(2*n*(7*n-2) - 3*(-1)^n + 3)/24.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = 2*(x^2)*(1 + 3*x + 2*x^2 + x^3) and g(x) = ((1-x)^4)*(1+x)^2.
a(n) = A045991(n) - A212970(n-1). - Ayoub Saber Rguez, Mar 31 2023

A212970 Number of (w,x,y) with all terms in {0,...,n} and w != x and x < range(w,x,y).

Original entry on oeis.org

0, 2, 8, 22, 44, 80, 128, 196, 280, 390, 520, 682, 868, 1092, 1344, 1640, 1968, 2346, 2760, 3230, 3740, 4312, 4928, 5612, 6344, 7150, 8008, 8946, 9940, 11020, 12160, 13392, 14688, 16082, 17544, 19110, 20748, 22496, 24320, 26260, 28280
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.
Twice the partial sums of A210977. - J. M. Bergot, Aug 10 2013

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w != x < (Max[w, x, y] - Min[w, x, y]),
       s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212970 *)
    m/2 (* essentially A088003 *)

Formula

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = 2*x*(1 + 2*x + 2*x^2) and g(x) = ((1-x)^4)(1+x)^2.
a(n) = 2 * A088003(n) for n>0.
From Ayoub Saber Rguez, Mar 31 2023: (Start)
a(n) + A212969(n+1) = A045991(n+1).
a(n) = (10*n^3 + 24*n^2 + 8*n + (6*n)*(n mod 2))/24. (End)

Extensions

Typo in name corrected by Ayoub Saber Rguez, Mar 31 2023

A212971 Number of triples (w,x,y) with all terms in {0,...,n} and w < floor((x+y)/3).

Original entry on oeis.org

0, 0, 3, 11, 25, 48, 82, 128, 189, 267, 363, 480, 620, 784, 975, 1195, 1445, 1728, 2046, 2400, 2793, 3227, 3703, 4224, 4792, 5408, 6075, 6795, 7569, 8400, 9290, 10240, 11253, 12331, 13475, 14688, 15972, 17328, 18759, 20267, 21853, 23520
Offset: 0

Views

Author

Clark Kimberling, Jun 03 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w < Floor[(x + y)/3], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212971*)
    LinearRecurrence[{3,-3,2,-3,3,-1},{0,0,3,11,25,48},50] (* Harvey P. Dale, Aug 24 2021 *)

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
G.f.: (x^2)*(3 + 2*x + x^2)/((1 + x + x^2)*(1-x)^4).
a(n) = (n+1)^3 - A212972(n).
From Ayoub Saber Rguez, Dec 11 2023: (Start)
a(n) = A045991(n+1) - A212974(n).
a(n) = (n^3 + n^2 - n - 1 + (((n+1) mod 3) mod 2))/3. (End)

A212975 Number of (w,x,y) with all terms in {0,...,n} and even range.

Original entry on oeis.org

1, 2, 15, 28, 65, 102, 175, 248, 369, 490, 671, 852, 1105, 1358, 1695, 2032, 2465, 2898, 3439, 3980, 4641, 5302, 6095, 6888, 7825, 8762, 9855, 10948, 12209, 13470, 14911, 16352, 17985, 19618, 21455, 23292, 25345, 27398, 29679, 31960
Offset: 0

Views

Author

Clark Kimberling, Jun 03 2012

Keywords

Comments

a(n)+A212976(n) = (n+1)^3.
For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Mod[Max[w, x, y] - Min[w, x, y], 2] == 0,
       s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212975 *)

Formula

a(n) = (n+1)*(2*n*(n+2)+3*(-1)^n+1)/4.
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
G.f.: f(x)/g(x), where f(x) = 1 + 10*x^2 + x^4 and g(x) = ((1-x)^4)*(1+x)^2.
Previous Showing 21-30 of 76 results. Next