A382079
Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 3, 4, 6, 5, 10, 9, 13, 14, 21, 20, 32, 31, 42, 47, 63, 62, 90, 94, 117, 138, 170, 186, 235, 260, 315, 363, 429, 493, 588, 674, 795, 901, 1060, 1209, 1431, 1608, 1896, 2152, 2515, 2854, 3310, 3734, 4368, 4905, 5686
Offset: 0
The unique multiset partition for (3222111) is {{1},{2},{1,2},{1,2,3}}.
The a(1) = 1 through a(12) = 13 partitions:
1 2 3 4 5 6 7 8 9 A B C
211 221 411 322 332 441 433 443 552
311 2211 331 422 522 442 533 633
511 611 711 622 551 822
3311 42111 811 722 A11
32111 3322 911 4422
4411 42221 5511
32221 53111 33321
43111 62111 52221
52111 54111
63111
72111
3222111
Normal multiset partitions of this type are counted by
A116539, see
A381718.
These partitions are ranked by
A293511.
Twice-partitions of this type (sets of sets) are counted by
A358914, see
A279785.
For distinct block-sums instead of blocks we have
A382460, ranked by
A381870.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets, see
A381633.
A265947 counts refinement-ordered pairs of integer partitions.
-
ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Select[IntegerPartitions[n],Length[ssfacs[Times@@Prime/@#]]==1&]],{n,0,15}]
A330470
Number of non-isomorphic series/singleton-reduced rooted trees on a multiset of size n.
Original entry on oeis.org
1, 1, 2, 7, 39, 236, 1836, 16123, 162008, 1802945, 22012335, 291290460, 4144907830, 62986968311, 1016584428612, 17344929138791, 311618472138440, 5875109147135658, 115894178676866576, 2385755803919949337, 51133201045333895149, 1138659323863266945177, 26296042933904490636133
Offset: 0
Non-isomorphic representatives of the a(4) = 39 trees, with singleton leaves (x) replaced by just x:
(1111) (1112) (1122) (1123) (1234)
(1(111)) (1(112)) (1(122)) (1(123)) (1(234))
(11(11)) (11(12)) (11(22)) (11(23)) (12(34))
((11)(11)) (12(11)) (12(12)) (12(13)) ((12)(34))
(1(1(11))) (2(111)) ((11)(22)) (2(113)) (1(2(34)))
((11)(12)) (1(1(22))) (23(11))
(1(1(12))) ((12)(12)) ((11)(23))
(1(2(11))) (1(2(12))) (1(1(23)))
(2(1(11))) ((12)(13))
(1(2(13)))
(2(1(13)))
(2(3(11)))
The case with all atoms equal or all atoms different is
A000669.
Not requiring singleton-reduction gives
A330465.
Labeled versions are
A316651 (normal orderless) and
A330471 (strongly normal).
The case where the leaves are sets is
A330626.
Cf.
A000311,
A005121,
A005804,
A141268,
A213427,
A292504,
A292505,
A318812,
A318848,
A318849,
A330467,
A330469,
A330474,
A330624.
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n )); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
A330655
Number of balanced reduced multisystems of weight n whose atoms cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 12, 138, 2652, 78106, 3256404, 182463296, 13219108288, 1202200963522, 134070195402644, 17989233145940910, 2858771262108762492, 530972857546678902490, 113965195745030648131036, 27991663753030583516229824, 7800669355870672032684666900, 2448021231611414334414904013956
Offset: 0
The a(0) = 1 through a(3) = 12 multisystems:
{} {1} {1,1} {1,1,1}
{1,2} {1,1,2}
{1,2,2}
{1,2,3}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
The strongly normal case is
A330475.
The case where the atoms are all different is
A005121.
The case where the atoms are all equal is
A318813.
Multiset partitions of normal multisets are
A255906.
Series-reduced rooted trees with normal leaves are
A316651.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n,k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, u += v*sum(j=n, #v, (-1)^(j-n)*binomial(j-1,n-1)); v=EulerT(v)); u}
seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2019
A330935
Irregular triangle read by rows where T(n,k) is the number of length-k chains from minimum to maximum in the poset of factorizations of n into factors > 1, ordered by refinement.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 5, 8, 4, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 1, 0, 1, 0, 1, 0, 1, 5, 5, 1, 0, 1
Offset: 1
Triangle begins:
1: 16: 0 1 3 2 31: 1 46: 0 1
2: 1 17: 1 32: 0 1 5 8 4 47: 1
3: 1 18: 0 1 2 33: 0 1 48: 0 1 10 23 15
4: 0 1 19: 1 34: 0 1 49: 0 1
5: 1 20: 0 1 2 35: 0 1 50: 0 1 2
6: 0 1 21: 0 1 36: 0 1 7 7 51: 0 1
7: 1 22: 0 1 37: 1 52: 0 1 2
8: 0 1 1 23: 1 38: 0 1 53: 1
9: 0 1 24: 0 1 5 5 39: 0 1 54: 0 1 5 5
10: 0 1 25: 0 1 40: 0 1 5 5 55: 0 1
11: 1 26: 0 1 41: 1 56: 0 1 5 5
12: 0 1 2 27: 0 1 1 42: 0 1 3 57: 0 1
13: 1 28: 0 1 2 43: 1 58: 0 1
14: 0 1 29: 1 44: 0 1 2 59: 1
15: 0 1 30: 0 1 3 45: 0 1 2 60: 0 1 9 11
Row n = 48 counts the following chains (minimum and maximum not shown):
() (6*8) (2*3*8)->(6*8) (2*2*2*6)->(2*4*6)->(6*8)
(2*24) (2*4*6)->(6*8) (2*2*3*4)->(2*3*8)->(6*8)
(3*16) (2*3*8)->(2*24) (2*2*3*4)->(2*4*6)->(6*8)
(4*12) (2*3*8)->(3*16) (2*2*2*6)->(2*4*6)->(2*24)
(2*3*8) (2*4*6)->(2*24) (2*2*2*6)->(2*4*6)->(4*12)
(2*4*6) (2*4*6)->(4*12) (2*2*3*4)->(2*3*8)->(2*24)
(3*4*4) (3*4*4)->(3*16) (2*2*3*4)->(2*3*8)->(3*16)
(2*2*12) (3*4*4)->(4*12) (2*2*3*4)->(2*4*6)->(2*24)
(2*2*2*6) (2*2*12)->(2*24) (2*2*3*4)->(2*4*6)->(4*12)
(2*2*3*4) (2*2*12)->(4*12) (2*2*3*4)->(3*4*4)->(3*16)
(2*2*2*6)->(6*8) (2*2*3*4)->(3*4*4)->(4*12)
(2*2*3*4)->(6*8) (2*2*2*6)->(2*2*12)->(2*24)
(2*2*2*6)->(2*24) (2*2*2*6)->(2*2*12)->(4*12)
(2*2*2*6)->(4*12) (2*2*3*4)->(2*2*12)->(2*24)
(2*2*3*4)->(2*24) (2*2*3*4)->(2*2*12)->(4*12)
(2*2*3*4)->(3*16)
(2*2*3*4)->(4*12)
(2*2*2*6)->(2*4*6)
(2*2*3*4)->(2*3*8)
(2*2*3*4)->(2*4*6)
(2*2*3*4)->(3*4*4)
(2*2*2*6)->(2*2*12)
(2*2*3*4)->(2*2*12)
Final terms of each row are
A317145.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
upfacs[q_]:=Union[Sort/@Join@@@Tuples[facs/@q]];
paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upfacs[y],y],{y,facs[n]}],{n},First[facs[n]]],Length[#]==k-1&]],{n,100},{k,PrimeOmega[n]}]
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A318846
Number of balanced reduced multisystems whose atoms cover an initial interval of positive integers with multiplicities equal to the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 4, 15, 11, 20, 21, 90, 51, 80, 32, 468, 166, 2910, 124, 521, 277, 20644, 266, 621, 1761, 1866, 841, 165874, 1374, 1484344, 436, 3797, 12741, 5383, 3108, 14653890, 103783, 31323, 2294, 158136988, 12419, 1852077284, 6382, 20786, 939131, 23394406084
Offset: 1
The a(12) = 21 multisystems on {1,1,2,3} (commas elided):
{1123} {{1}{123}} {{1}{1}{23}} {{{1}}{{1}{23}}}
{{2}{113}} {{1}{2}{13}} {{{23}}{{1}{1}}}
{{3}{112}} {{1}{3}{12}} {{{1}}{{2}{13}}}
{{11}{23}} {{2}{3}{11}} {{{2}}{{1}{13}}}
{{12}{13}} {{{13}}{{1}{2}}}
{{{1}}{{3}{12}}}
{{{3}}{{1}{12}}}
{{{12}}{{1}{3}}}
{{{2}}{{3}{11}}}
{{{3}}{{2}{11}}}
{{{11}}{{2}{3}}}
Cf.
A001055,
A002846,
A005121,
A181821,
A213427,
A281118,
A281119,
A305936,
A318762,
A318812,
A318813.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
tmsp[m_]:=Prepend[Join@@Table[tmsp[c],{c,Select[mps[m],1
A321470
Number of integer partitions of the n-th triangular number 1 + 2 + ... + n that can be obtained by choosing a partition of each integer from 1 to n and combining.
Original entry on oeis.org
1, 1, 2, 5, 16, 54, 212, 834, 3558, 15394, 69512, 313107, 1474095, 6877031, 32877196
Offset: 0
The a(1) = 1 through a(4) = 16 partitions:
(1) (21) (321) (4321)
(111) (2211) (32221)
(3111) (33211)
(21111) (42211)
(111111) (43111)
(222211)
(322111)
(331111)
(421111)
(2221111)
(3211111)
(4111111)
(22111111)
(31111111)
(211111111)
(1111111111)
The partition (222211) is the combination of (22)(21)(2)(1), so is counted under a(4). The partition (322111) is the combination of (22)(3)(11)(1), (31)(21)(2)(1), or (211)(3)(2)(1), so is also counted under a(4).
Cf.
A000217,
A001970,
A002846,
A063834,
A066723,
A173519,
A213427,
A242422,
A261049,
A265947,
A271619,
A299201,
A300383,
A317141.
-
Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@Range[1,n]]]],{n,6}]
-
from collections import Counter
from itertools import count, islice
from sympy.utilities.iterables import partitions
def A321470_gen(): # generator of terms
aset = {(1,)}
yield 1
for n in count(2):
yield len(aset)
aset = {tuple(sorted(p+q)) for p in aset for q in (tuple(sorted(Counter(q).elements())) for q in partitions(n))}
A321470_list = list(islice(A321470_gen(),10)) # Chai Wah Wu, Sep 20 2023
A321471
Heinz numbers of integer partitions that can be partitioned into blocks with sums {1, 2, ..., k} for some k.
Original entry on oeis.org
2, 6, 8, 30, 36, 40, 48, 64, 210, 252, 270, 280, 300, 324, 336, 360, 400, 432, 448, 480, 576, 640, 768, 1024, 2310, 2772, 2940, 2970, 3080, 3150, 3300, 3528, 3564, 3696, 3780, 3920, 3960, 4050, 4200, 4400, 4500, 4536, 4704, 4752, 4860, 4928, 5040, 5280, 5400
Offset: 1
The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (21), (111), (321), (2211), (3111), (21111), (111111), (4321), (42211), (32221), (43111), (33211), (222211), (421111), (322111), (331111), (2221111), (4111111), (3211111), (22111111), (31111111), (211111111), (1111111111).
The partition (322111) has Heinz number 360 and can be partitioned as ((1)(2)(3)(112)), ((1)(2)(12)(13)), or ((1)(11)(3)(22)), so 360 belongs to the sequence.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[2,1000],Select[Map[Total[primeMS[#]]&,facs[#],{2}],Sort[#]==Range[Max@@#]&]!={}&]
A321472
Heinz numbers of integer partitions whose parts can be further partitioned and flattened to obtain the partition (k, ..., 3, 2, 1) for some k.
Original entry on oeis.org
2, 5, 6, 13, 21, 22, 25, 29, 30, 46, 47, 57, 73, 85, 86, 91, 102, 107, 121, 123, 130, 142, 147, 151, 154, 165, 175, 185, 197, 201, 206, 210, 217, 222, 257, 298, 299
Offset: 1
The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (3), (2,1), (6), (4,2), (5,1), (3,3), (10), (3,2,1), (9,1), (15), (8,2), (21), (7,3), (14,1), (6,4), (7,2,1), (28), (5,5), (13,2), (6,3,1), (20,1), (4,4,2), (36), (5,4,1), (5,3,2), (4,3,3), (12,3), (45), (19,2), (27,1), (4,3,2,1).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,200],Select[Sort/@Join@@@Tuples[IntegerPartitions/@primeMS[#]],Sort[#]==Range[Max@@#]&]!={}&]
A382460
Number of integer partitions of n that can be partitioned into sets with distinct sums in exactly one way.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 3, 4, 6, 5, 10, 10, 13, 15, 22, 20, 32, 32, 43, 49, 65, 64, 92, 96, 121, 140, 173, 192
Offset: 0
The partition y = (3,3,2,1,1,1) has 2 partitions into sets: {{1},{3},{1,2},{1,3}} and {{1},{1,3},{1,2,3}}, but only the latter has distinct sums, so y is counted under a(11)
The a(1) = 1 through a(10) = 10 partitions (A=10):
1 2 3 4 5 6 7 8 9 A
211 221 411 322 332 441 433
311 2211 331 422 522 442
511 611 711 622
3311 42111 811
32111 3322
4411
32221
43111
52111
Twice-partitions of this type are counted by
A279785.
Multiset partitions of this type are counted by
A381633.
Normal multiset partitions of this type are counted by
A381718.
These partitions are ranked by
A381870.
For distinct blocks instead of block-sums we have
A382079, ranks
A293511.
A265947 counts refinement-ordered pairs of integer partitions.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&) /@ Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Select[IntegerPartitions[n], Length[Select[ssfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]]==1&]],{n,0,15}]
Comments