cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A238860 Partitions with superdiagonal growth: number of partitions (p0, p1, p2, ...) of n with pi - p0 >= i.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 15, 18, 23, 26, 35, 43, 53, 64, 79, 91, 113, 135, 166, 197, 237, 277, 331, 387, 459, 541, 646, 754, 888, 1032, 1204, 1395, 1626, 1882, 2196, 2542, 2952, 3404, 3934, 4507, 5182, 5935, 6812, 7800, 8947, 10225, 11709, 13354, 15231, 17314, 19685, 22316, 25323, 28686, 32524, 36817, 41695
Offset: 0

Views

Author

Joerg Arndt, Mar 24 2014

Keywords

Comments

The partitions are represented as weakly increasing lists of parts.

Examples

			There are a(13) = 23 such partitions of 13:
01:  [ 1 2 3 7 ]
02:  [ 1 2 4 6 ]
03:  [ 1 2 5 5 ]
04:  [ 1 2 10 ]
05:  [ 1 3 3 6 ]
06:  [ 1 3 4 5 ]
07:  [ 1 3 9 ]
08:  [ 1 4 4 4 ]
09:  [ 1 4 8 ]
10:  [ 1 5 7 ]
11:  [ 1 6 6 ]
12:  [ 1 12 ]
13:  [ 2 3 8 ]
14:  [ 2 4 7 ]
15:  [ 2 5 6 ]
16:  [ 2 11 ]
17:  [ 3 4 6 ]
18:  [ 3 5 5 ]
19:  [ 3 10 ]
20:  [ 4 9 ]
21:  [ 5 8 ]
22:  [ 6 7 ]
23:  [ 13 ]
		

Crossrefs

Cf. A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A008930 (subdiagonal compositions), A238875 (subdiagonal partitions), A010054 (subdiagonal partitions into distinct parts).
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).

A238861 Compositions with superdiagonal growth: number of compositions (p0, p1, p2, ...) of n with pi - p0 >= i.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 18, 24, 32, 41, 55, 72, 95, 125, 164, 212, 275, 355, 459, 592, 763, 980, 1257, 1605, 2044, 2598, 3298, 4179, 5290, 6685, 8435, 10623, 13353, 16751, 20978, 26228, 32746, 40831, 50850, 63247, 78569, 97475, 120770, 149429, 184641, 227853, 280832, 345722, 425134, 522232, 640847, 785604
Offset: 0

Views

Author

Joerg Arndt, Mar 24 2014

Keywords

Examples

			There are a(12) = 24 such compositions of 12:
01:  [ 1 2 3 6 ]
02:  [ 1 2 4 5 ]
03:  [ 1 2 5 4 ]
04:  [ 1 2 9 ]
05:  [ 1 3 3 5 ]
06:  [ 1 3 4 4 ]
07:  [ 1 3 8 ]
08:  [ 1 4 3 4 ]
09:  [ 1 4 7 ]
10:  [ 1 5 6 ]
11:  [ 1 6 5 ]
12:  [ 1 7 4 ]
13:  [ 1 8 3 ]
14:  [ 1 11 ]
15:  [ 2 3 7 ]
16:  [ 2 4 6 ]
17:  [ 2 5 5 ]
18:  [ 2 6 4 ]
19:  [ 2 10 ]
20:  [ 3 4 5 ]
21:  [ 3 9 ]
22:  [ 4 8 ]
23:  [ 5 7 ]
24:  [ 12 ]
		

Crossrefs

Cf. A238860 (partitions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A008930 (subdiagonal compositions), A238875 (subdiagonal partitions), A010054 (subdiagonal partitions into distinct parts).
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i=0, add(b(n-j, j+1), j=1..n),
           add(b(n-j, i+1), j=i..n)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, Sum[b[n-j, j+1], {j, 1, n}], Sum[ b[n-j, i+1], {j, i, n}]]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N);
    gf = 1 + sum(n=1, N, q^(n*(n+1)/2) / ( (1-q)^(n-1) * (1-q^n) ) );
    v=Vec(gf) \\ Joerg Arndt, Mar 30 2014

Formula

G.f.: 1 + sum(n>=1, q^(n*(n+1)/2) / ( (1-q)^(n-1) * (1-q^n) ) ). [Joerg Arndt, Mar 30 2014]

A238876 Partitions with subdiagonal growth: number of partitions (p0, p1, p2, ...) of n with pi - p0 <= i.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 15, 20, 24, 34, 46, 58, 76, 97, 126, 166, 209, 262, 333, 422, 529, 667, 833, 1024, 1268, 1567, 1934, 2385, 2911, 3549, 4319, 5237, 6340, 7675, 9274, 11164, 13404, 16046, 19173, 22889, 27278, 32458, 38574, 45750, 54140, 63976, 75449, 88848, 104503, 122773, 144077, 168860, 197609, 230916, 269494
Offset: 0

Views

Author

Joerg Arndt, Mar 24 2014

Keywords

Comments

The partitions are represented as weakly increasing lists of parts.
The number of such partitions that start with part p0 = 1 are given in A238875.

Examples

			The a(9) = 20 such partitions are:
01:  [ 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 1 3 ]
04:  [ 1 1 1 1 1 2 2 ]
05:  [ 1 1 1 1 1 4 ]
06:  [ 1 1 1 1 2 3 ]
07:  [ 1 1 1 1 5 ]
08:  [ 1 1 1 2 2 2 ]
09:  [ 1 1 1 2 4 ]
10:  [ 1 1 1 3 3 ]
11:  [ 1 1 2 2 3 ]
12:  [ 1 1 3 4 ]
13:  [ 1 2 2 2 2 ]
14:  [ 1 2 2 4 ]
15:  [ 1 2 3 3 ]
16:  [ 2 2 2 3 ]
17:  [ 2 3 4 ]
18:  [ 3 3 3 ]
19:  [ 4 5 ]
20:  [ 9 ]
		

Crossrefs

Cf. A238859 (compositions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A008930 (subdiagonal compositions), A010054 (subdiagonal partitions into distinct parts).
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).

A063978 Sum_{i for which n - i*(i-1)/2 >= 0} binomial (n - i*(i-1)/2, i).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 27, 40, 58, 83, 118, 167, 235, 328, 454, 624, 853, 1161, 1574, 2125, 2856, 3821, 5090, 6754, 8931, 11773, 15474, 20280, 26502, 34533, 44870, 58142, 75145, 96885, 124630, 159973, 204909, 261930, 334143, 425417, 540566, 685576, 867885, 1096726, 1383545, 1742509, 2191123, 2750980
Offset: 0

Views

Author

Helmut Schnitzspan (HSchnitzspan(AT)gmx.de), Sep 05 2001

Keywords

Comments

Number of compositions n = p(1) + p(2) + ... + p(m) such that p(k)>=k-1 for k>=2, see example. - Joerg Arndt, Dec 19 2012

Examples

			From _Joerg Arndt_, Dec 19 2012: (Start)
The a(7) = 18 compositions 7 = p(1) + p(2) + ... + p(m) such that for k>=2 p(k)>=k-1 are
[ 1]  [ 1 1 2 3 ]
[ 2]  [ 1 1 5 ]
[ 3]  [ 1 2 4 ]
[ 4]  [ 1 3 3 ]
[ 5]  [ 1 4 2 ]
[ 6]  [ 1 6 ]
[ 7]  [ 2 1 4 ]
[ 8]  [ 2 2 3 ]
[ 9]  [ 2 3 2 ]
[10]  [ 2 5 ]
[11]  [ 3 1 3 ]
[12]  [ 3 2 2 ]
[13]  [ 3 4 ]
[14]  [ 4 1 2 ]
[15]  [ 4 3 ]
[16]  [ 5 2 ]
[17]  [ 6 1 ]
[18]  [ 7 ]
(End)
		

Crossrefs

Cf. A064188.
Cf. A219282 (compositions such that p(k)>=k for all k; superdiagonal bargraphs).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          add(b(n-j, i+1), j=i..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 28 2014
  • Mathematica
    Table[ Sum[ Binomial[ n - i(i - 1)/2, i], {i, 0, Floor[ (Sqrt[8n + 1] - 1)/2]} ], {n, 0, 40}]
  • PARI
    N=66; q='q+O('q^N); Vec( sum(n=1, N, q^(n*(n-1)/2) / (1-q)^n ) ) \\ Joerg Arndt, Mar 30 2014

Formula

G.f.: Sum_{k>=1} x^(k*(k-1)/2) / (1-x)^k. - Vladeta Jovovic, Sep 25 2004

Extensions

More terms from Dean Hickerson, Sep 06 2001

A351983 Number of integer compositions of n with exactly one part above the diagonal.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 18, 35, 67, 131, 257, 505, 996, 1973, 3915, 7781, 15486, 30855, 61527, 122764, 245069, 489412, 977673, 1953515, 3904108, 7803545, 15599618, 31187269, 62355347, 124679883, 249310255, 498540890, 996953659, 1993701032, 3987069747, 7973603891
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2022

Keywords

Examples

			The a(2) = 1 through a(6) = 18 compositions:
  (2)  (3)   (4)    (5)     (6)
       (21)  (13)   (14)    (15)
             (22)   (32)    (42)
             (31)   (41)    (51)
             (211)  (131)   (114)
                    (212)   (132)
                    (221)   (141)
                    (311)   (213)
                    (2111)  (222)
                            (312)
                            (321)
                            (411)
                            (1311)
                            (2112)
                            (2121)
                            (2211)
                            (3111)
                            (21111)
		

Crossrefs

The version for permutations is A000295, weak A057427.
The version for partitions is A002620, weak A001477.
The weak version is A177510.
The version for fixed points is A240736, nonfixed A352520.
This is column k = 1 of A352524; column k = 0 is A008930.
A238349 counts compositions by fixed points, first column A238351.
A352521 counts compositions by strong nonexcedances, first column A219282.
A352522 counts compositions by weak nonexcedances, first column A238874.
A352523 counts compositions by nonfixed points, first column A010054.
A352524 counts compositions by strong excedances, first column A008930.
A352525 counts compositions by weak excedances, first column A177510.

Programs

  • Mathematica
    pless[y_]:=Length[Select[Range[Length[y]],#
    				
  • PARI
    S(v,u,c=0)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))}
    seq(n)={my(v=vector(1+n), s=0); v[1]=1; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1)), O(x^2)); s+=apply(p->polcoef(p,1), v)); s} \\ Andrew Howroyd, Jan 02 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 02 2023

A352875 Number of integer compositions y of n with a fixed point y(i) = i.

Original entry on oeis.org

0, 1, 1, 2, 5, 10, 21, 42, 86, 174, 351, 708, 1424, 2861, 5743, 11520, 23092, 46269, 92673, 185562, 371469, 743491, 1487870, 2977164, 5956616, 11916910, 23839736, 47688994, 95393322, 190811346, 381662507, 763389209, 1526881959, 3053930971, 6108131542, 12216698288
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 0 through a(5) = 10 compositions (empty column indicated by dot):
  .  (1)  (11)  (12)   (13)    (14)
                (111)  (22)    (32)
                       (112)   (113)
                       (121)   (122)
                       (1111)  (131)
                               (221)
                               (1112)
                               (1121)
                               (1211)
                               (11111)
		

Crossrefs

The version for partitions is A001522, ranked by A352827 (unproved).
The version for permutations is A002467, complement A000166.
The complement for partitions is A064428, ranked by A352826 (unproved).
This is the sum of latter columns of A238349, nonfixed A352523.
The complement is counted by A238351.
The complement for reversed partitions is A238394, ranked by A352830.
The version for reversed partitions is A238395, ranked by A352872.
The case of just one fixed point is A240736.
A008290 counts permutations by fixed points, nonfixed A098825.
A011782 counts compositions.
A115720 and A115994 count partitions by Durfee square.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352512 counts fixed points in standard compositions, nonfixed A352513.
A352521 = comps by subdiags, first col A219282, rank stat A352514.
A352522 = comps by weak subdiags, first col A238874, rank stat A352515.
A352524 = comps by superdiags, first col A008930, rank stat A352516.
A352525 = comps by weak superdiags, col k=1 A177510, rank stat A352517.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pq[#]>0&]],{n,0,15}]
  • PARI
    S(v,u,c)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))}
    seq(n)={my(v=vector(1+n), s=vector(#v, i, 2^(i-2))); v[1]=1; s[1]=0; for(i=1, n, v=S(v, vector(n, j, if(j==i,'x,1)), O(x)); s-=apply(p->polcoef(p,0), v)); s} \\ Andrew Howroyd, Jan 02 2023

Formula

a(n) = 2^(n-1) - A238351(n) for n >= 1. - Andrew Howroyd, Jan 02 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 02 2023

A353318 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k excedances (parts above the diagonal), zeros omitted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 9, 1, 1, 12, 2, 1, 16, 5, 1, 20, 9, 1, 25, 16, 1, 30, 25, 1, 36, 39, 1, 1, 42, 56, 2, 1, 49, 80, 5, 1, 56, 109, 10, 1, 64, 147, 19, 1, 72, 192, 32, 1, 81, 249, 54, 1, 90, 315, 84, 1, 100, 396, 129, 1, 1, 110, 489, 190, 2, 1, 121, 600, 275, 5
Offset: 1

Views

Author

Gus Wiseman, May 21 2022

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   2
   1   4
   1   6
   1   9   1
   1  12   2
   1  16   5
   1  20   9
   1  25  16
   1  30  25
   1  36  39   1
   1  42  56   2
   1  49  80   5
   1  56 109  10
For example, row n = 7 counts the following partitions:
  (1111111)  (7)       (43)
             (52)      (331)
             (61)
             (322)
             (421)
             (511)
             (2221)
             (3211)
             (4111)
             (22111)
             (31111)
             (211111)
		

Crossrefs

Row sums are A000041.
Row lengths are A000194, reversed A003056.
Column k = 1 is A002620, reversed A238875.
Column k = 2 is A097701.
The version for permutations is A008292, opposite A123125.
The weak version is A115720/A115994, rank statistic A257990.
The version for compositions is A352524, weak A352525.
The version for reversed partitions is A353319.
A000700 counts self-conjugate partitions, ranked by A088902.
A001522 counts partitions with a fixed point, ranked by A352827 (unproved).
A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved).
A238352 counts reversed partitions by fixed points, rank statistic A352822.

Programs

  • Mathematica
    partsabove[y_]:=Length[Select[Range[Length[y]],#
    				

A305556 Irregular triangle read by rows: T(n,k) is the number of superdiagonal bargraphs with area n and with k columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 5, 3, 1, 6, 6, 1, 7, 10, 1, 8, 15, 1, 1, 9, 21, 4, 1, 10, 28, 10, 1, 11, 36, 20, 1, 12, 45, 35, 1, 13, 55, 56, 1, 1, 14, 66, 84, 5, 1, 15, 78, 120, 15, 1, 16, 91, 165, 35, 1, 17, 105, 220, 70, 1, 18, 120, 286, 126, 1, 19, 136, 364, 210, 1, 1, 20, 153, 455
Offset: 1

Views

Author

R. J. Mathar, Jun 21 2018

Keywords

Examples

			   1,
   1,
   1,   1,
   1,   2,
   1,   3,
   1,   4,   1,
   1,   5,   3,
   1,   6,   6,
   1,   7,  10,
   1,   8,  15,   1,
   1,   9,  21,   4,
   1,  10,  28,  10,
   1,  11,  36,  20,
   1,  12,  45,  35,
   1,  13,  55,  56,   1,
   1,  14,  66,  84,   5,
   1,  15,  78, 120,  15,
   1,  16,  91, 165,  35,
   1,  17, 105, 220,  70,
   1,  18, 120, 286, 126,
   1,  19, 136, 364, 210,   1,
   1,  20, 153, 455, 330,   6,
   1,  21, 171, 560, 495,  21,
   1,  22, 190, 680, 715,  56,
   1,  23, 210, 816,1001, 126,
   1,  24, 231, 969,1365, 252,
   1,  25, 253,1140,1820, 462,
   1,  26, 276,1330,2380, 792,   1,
   1,  27, 300,1540,3060,1287,   7,
   1,  28, 325,1771,3876,2002,  28,
		

Crossrefs

Cf. A219282 (row sums), A000217 (column 3), A000292 (column 4), A000332 (column 5)

Programs

  • Maple
    A305556 := proc(n,k)
        binomial(n-binomial(k,2)-1,k-1) ;
    end proc:
    for n from 0 to 30 do
    for k from 1 to floor((sqrt(1+8*n)-1)/2) do
        printf("%d,",A305556(n,k)) ;
    end do:
    end do:

Formula

T(n,k) = binomial(n-1-k*(k-1)/2,k-1), 1<=k <= (sqrt(1+8*n)-1)/2.

A353319 Irregular triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k excedances (parts above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 4, 2, 1, 5, 4, 2, 7, 6, 2, 10, 6, 6, 15, 7, 7, 1, 18, 14, 7, 3, 26, 15, 11, 4, 35, 17, 19, 6, 47, 24, 19, 11, 61, 33, 22, 18, 1, 80, 44, 28, 20, 4, 103, 54, 42, 25, 7, 138, 60, 57, 31, 11, 175, 85, 58, 52, 15, 224, 112, 66, 64, 24
Offset: 1

Views

Author

Gus Wiseman, May 21 2022

Keywords

Examples

			Triangle begins:
   1
   1  1
   2  1
   2  3
   4  2  1
   5  4  2
   7  6  2
  10  6  6
  15  7  7  1
  18 14  7  3
  26 15 11  4
  35 17 19  6
  47 24 19 11
  61 33 22 18  1
  80 44 28 20  4
For example, row n = 9 counts the following reversed partitions:
  (1134)       (9)     (27)   (234)
  (1224)       (18)    (36)
  (1233)       (117)   (45)
  (11115)      (126)   (135)
  (11124)      (1116)  (144)
  (11133)      (1125)  (225)
  (11223)      (2223)  (333)
  (12222)
  (111114)
  (111123)
  (111222)
  (1111113)
  (1111122)
  (11111112)
  (111111111)
		

Crossrefs

Row sums are A000041.
Row lengths are A003056.
The version for permutations is A008292, opposite A123125.
The weak unreversed version is A115720/A115994, rank statistic A257990.
For fixed points instead of excedances we have A238352, rank stat A352822.
Column k = 0 is A238875.
The version for compositions is A352524, weak A352525.
The version for unreversed partitions is A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A001522 counts partitions with a fixed point, ranked by A352827 (unproved).
A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved).

Programs

  • Mathematica
    partsabove[y_]:=Length[Select[Range[Length[y]],#
    				

A236310 Expansion of Sum_{k>=0} x^((k+1)^2)/(1-x)^k.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 52, 62, 74, 89, 108, 132, 162, 199, 244, 298, 362, 437, 524, 625, 743, 882, 1047, 1244, 1480, 1763, 2102, 2507, 2989, 3560, 4233, 5022, 5943, 7015, 8261, 9709, 11393, 13354, 15641, 18312, 21435, 25089, 29365, 34367, 40213, 47036, 54985, 64227, 74950
Offset: 0

Views

Author

Joerg Arndt, Apr 22 2014

Keywords

Comments

a(n) is the number of compositions of n such that the first part is equal to the number of parts and all parts are greater than or equal to the first part. - John Tyler Rascoe, Feb 10 2024

Examples

			From _John Tyler Rascoe_, Feb 10 2024: (Start)
The compositions for n = 9..11 are:
9:  [3,3,3], [2,7];
10: [3,4,3], [3,3,4], [2,8];
11: [3,4,4], [3,3,5], [3,5,3], [2,9].
(End)
		

Crossrefs

Cf. A098131 (g.f. Sum_{k>=0} x^(k^2)/(1-x)^k).
Cf. A219282 (g.f. Sum_{k>=0} x^(k*(k+1)/2)/(1-x)^k).
Cf. A063978 (g.f. Sum_{k>=0} x^(k^2)/(1-x)^(k+1)).

Programs

  • PARI
    N=66; q='q+O('q^N);
    gf=sum(n=0, N, q^((n+1)^2) / (1-q)^n );
    concat([0],Vec(gf))

Formula

G.f.: Sum_{k>=0} x^((k+1)^2)/(1-x)^k.
G.f.: Sum_{k>0} A(x,k) where A(x,k) = (x^k)*(x^k/(1-x))^(k-1) is the g.f. for compositions of this kind with first part k. - John Tyler Rascoe, Feb 10 2024
Previous Showing 21-30 of 31 results. Next