cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A301287 Coordination sequence for node of type 3.12.12 in "cph" 2-D tiling (or net).

Original entry on oeis.org

1, 3, 6, 7, 8, 15, 18, 17, 20, 25, 28, 29, 30, 35, 40, 39, 40, 47, 50, 49, 52, 57, 60, 61, 62, 67, 72, 71, 72, 79, 82, 81, 84, 89, 92, 93, 94, 99, 104, 103, 104, 111, 114, 113, 116, 121, 124, 125, 126, 131, 136, 135, 136, 143, 146, 145, 148, 153, 156, 157, 158
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, first tiling.

Crossrefs

Cf. A301289.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    Join[{1, 3, 6}, LinearRecurrence[{1, -1, 2, -1, 1, -1}, {7, 8, 15, 18, 17, 20}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    See Links section.

Formula

G.f. = -(2*x^8-2*x^7-x^6-4*x^5-2*x^4-2*x^3-4*x^2-2*x-1) / ((x^2+1)*(x^2+x+1)*(x-1)^2). N. J. A. Sloane, Mar 28 2018 (This is now a theorem. - N. J. A. Sloane, Apr 05 2018)
Equivalent conjecture: 3*a(n) = 8*n+2*A057078(n+1)+3*A228826(n+2). - R. J. Mathar, Mar 31 2018 (This is now a theorem. - N. J. A. Sloane, Apr 05 2018)
Theorem: G.f. = (1+2*x+4*x^2+2*x^3+2*x^4+4*x^5+1*x^6+2*x^7-2*x^8) / ((1-x)*(1+x^2)*(1-x^3)).
Proof. This follows by applying the coloring book method described in the Goodman-Strauss & Sloane article. The trunks and branches structure is shown in the links, and the details of the proof (by calculating the generating function) are on the next two scanned pages. - N. J. A. Sloane, Apr 05 2018

Extensions

More terms from Rémy Sigrist, Mar 27 2018

A301289 Coordination sequence for a tetravalent node of type 3.4.3.12 in "cph" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 5, 6, 12, 14, 15, 18, 21, 26, 28, 26, 31, 38, 37, 38, 44, 46, 47, 50, 53, 58, 60, 58, 63, 70, 69, 70, 76, 78, 79, 82, 85, 90, 92, 90, 95, 102, 101, 102, 108, 110, 111, 114, 117, 122, 124, 122, 127, 134, 133, 134, 140, 142, 143, 146, 149, 154, 156, 154
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, first tiling.

Crossrefs

Cf. A301287.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    Join[{1, 4}, LinearRecurrence[{2, -3, 4, -4, 4, -3, 2, -1}, {5, 6, 12, 14, 15, 18, 21, 26}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    \\ See Links section.

Formula

Theorem: G.f. = (1+2*x+4*x^3+3*x^4+6*x^6-4*x^7+6*x^8-2*x^9) / ((1-x)^2*(1+x^2)*(1+x^2+x^4)).
The proof uses the coloring book method described in the Goodman-Strauss & Sloane article. The trunks and branches structure is shown in the first scan. (Not yet added.) The trunks are blue, the branches are red, and the twigs are green. There is mirror symmetry about the Y-axis, and quadrants I and II are essentially identical, as are quadrants III and IV. The counts of the various classes of nodes are given in the second scan, and the corresponding generating functions are in the third scan. Adding up the different terms gives the g.f. stated above. - N. J. A. Sloane, Apr 07 2018
E.g.f.: (6*(3 + (4*exp(x) - 3)*x + 3*sin(x)) - 9*cos(sqrt(3)*x/2)*cosh(x/2) + sqrt(3)*sin(sqrt(3)*x/2)*(8*cosh(x/2) - 5*sinh(x/2)))/9. - Stefano Spezia, Jun 08 2024

Extensions

More terms from Rémy Sigrist, Mar 27 2018

A301291 Expansion of (x^4+3*x^3+x^2+3*x+1)/((x^2+1)*(x-1)^2).

Original entry on oeis.org

1, 5, 9, 13, 18, 23, 27, 31, 36, 41, 45, 49, 54, 59, 63, 67, 72, 77, 81, 85, 90, 95, 99, 103, 108, 113, 117, 121, 126, 131, 135, 139, 144, 149, 153, 157, 162, 167, 171, 175, 180, 185, 189, 193, 198, 203, 207, 211, 216, 221, 225, 229, 234, 239, 243, 247, 252
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Appears to be coordination sequence for node of type 3^3.4^2 in "krm" 2-D tiling (or net).
Also appears to be coordination sequence for pentavalent node in "krk" 2-D tiling (or net).
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, row 3, first tiling; also p. 66, row 3, first tiling.

Crossrefs

Cf. A301293.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Maple
    f:=proc(n) if n=0 then 1
    elif (n mod 2) = 0 then 9*n/2
    elif (n mod 4) = 1 then 18*(n-1)/4+5
    else 18*(n-3)/4+13; fi; end;
    s1:=[seq(f(n),n=0..60)];
  • Mathematica
    Join[{1}, LinearRecurrence[{2, -2, 2, -1}, {5, 9, 13, 18}, 60]] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec((x^4+3*x^3+x^2+3*x+1)/((x^2+1)*(x-1)^2) + O(x^60)) \\ Colin Barker, Mar 23 2018

Formula

For explicit formula for a(n) see Maple code.
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n > 4. - Colin Barker, Mar 23 2018
E.g.f.: (2 + 9*x*exp(x) + sin(x))/2. - Stefano Spezia, Jan 31 2023

A301293 Expansion of (x^2+x+1)^2 / ((x^2+1)*(x-1)^2).

Original entry on oeis.org

1, 4, 9, 14, 18, 22, 27, 32, 36, 40, 45, 50, 54, 58, 63, 68, 72, 76, 81, 86, 90, 94, 99, 104, 108, 112, 117, 122, 126, 130, 135, 140, 144, 148, 153, 158, 162, 166, 171, 176, 180, 184, 189, 194, 198, 202, 207, 212, 216, 220, 225, 230, 234, 238, 243, 248, 252
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Appears to be coordination sequence for node of type 4^4 in "krm" 2-D tiling (or net).
Also appears to be coordination sequence for tetravalent node in "krk" 2-D tiling (or net).
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, row 3, first tiling; also p. 66, row 3, first tiling.

Crossrefs

Cf. A301291.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Maple
    f:=proc(n) if n=0 then 1
    elif (n mod 2) = 0 then 9*n/2
    elif (n mod 4) = 1 then 18*(n-1)/4+4
    else 18*(n-3)/4+14; fi; end;
    s1:=[seq(f(n),n=0..60)];
  • Mathematica
    Join[{1}, LinearRecurrence[{2, -2, 2, -1}, {4, 9, 14, 18}, 60]] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec((x^2+x+1)^2 / ((x^2+1)*(x-1)^2) + O(x^60)) \\ Colin Barker, Mar 23 2018

Formula

For explicit formula for a(n) see Maple code.
a(n) = 9*n/2 + (1 - (-1)^n)*i^(n*(n + 1))/4 for n>0, a(0)=1 and i=sqrt(-1). Therefore, for even n>0 a(n) = 9*n/2, otherwise a(n) = 9*n/2 - (-1)^((n-1)/2)/2. - Bruno Berselli, Mar 23 2018
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4. - Colin Barker, Mar 23 2018

A301298 Expansion of (1 + 4*x + 4*x^2 + 4*x^3 + x^4)/((1 - x)*(1 - x^3)).

Original entry on oeis.org

1, 5, 9, 14, 19, 23, 28, 33, 37, 42, 47, 51, 56, 61, 65, 70, 75, 79, 84, 89, 93, 98, 103, 107, 112, 117, 121, 126, 131, 135, 140, 145, 149, 154, 159, 163, 168, 173, 177, 182, 187, 191, 196, 201, 205, 210, 215, 219, 224, 229, 233, 238, 243, 247, 252, 257, 261
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2018

Keywords

Comments

Coordination sequence for pentavalent node in the "krl" 2-D tiling (or net). (This is easily established using the "coloring book" method - see the Goodman-Strauss & Sloane link.)
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 3rd row, second tiling.

Crossrefs

Cf. A298024.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Magma
    I:=[1,5,9,14,19]; [n le 5 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Mar 26 2018
    
  • Magma
    [n eq 0 select 1 else 5*n-Floor((n+1)/3): n in [0..60]]; // Bruno Berselli, Mar 26 2018
    
  • Mathematica
    CoefficientList[Series[(x^4 + 4 x^3 + 4 x^2 + 4 x + 1) / ((1 -x) (1 - x^3)), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 26 2018 *)
    LinearRecurrence[{1,0,1,-1},{1,5,9,14,19},60] (* Harvey P. Dale, Dec 30 2024 *)
  • PARI
    lista(nn) = {x='x+O('x^nn); Vec((x^4+4*x^3+4*x^2+4*x+1)/((1-x)*(1-x^3)))} \\ Altug Alkan, Mar 26 2018

Formula

G.f.: (1 + 4*x + 4*x^2 + 4*x^3 + x^4)/((1 - x)*(1 - x^3)).
a(n) = 5*n - floor((n + 1)/3) for n>0, a(0)=1. - Bruno Berselli, Mar 26 2018

A301299 Coordination sequence for node of type V1 in "krq" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 8, 13, 18, 22, 26, 29, 34, 40, 44, 48, 50, 55, 62, 66, 70, 71, 76, 84, 88, 92, 92, 97, 106, 110, 114, 113, 118, 128, 132, 136, 134, 139, 150, 154, 158, 155, 160, 172, 176, 180, 176, 181, 194, 198, 202, 197, 202, 216, 220, 224, 218, 223, 238, 242, 246, 239, 244, 260, 264, 268, 260, 265, 282
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, 2nd tiling.

Crossrefs

Cf. A301301.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{1,4,8,13,18,22,26,29,34,40,44},100] (* Paolo Xausa, Nov 15 2023 *)

Formula

G.f.: -(-x^10-4*x^9-8*x^8-13*x^7-18*x^6-20*x^5-18*x^4-13*x^3-8*x^2-4*x-1)/(x^10-2*x^5+1). - N. J. A. Sloane, Mar 29 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301301 Coordination sequence for node of type V2 in "krq" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 8, 12, 16, 20, 25, 30, 34, 39, 43, 47, 53, 56, 60, 65, 68, 75, 78, 81, 87, 89, 97, 100, 102, 109, 110, 119, 122, 123, 131, 131, 141, 144, 144, 153, 152, 163, 166, 165, 175, 173, 185, 188, 186, 197, 194, 207, 210, 207, 219, 215, 229, 232, 228, 241, 236, 251, 254, 249, 263, 257, 273, 276, 270
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, 2nd tiling.

Crossrefs

Cf. A301299.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{1,4,8,12,16,20,25,30,34,39,43,47,53,56,60,65,68,75},100] (* Paolo Xausa, Nov 15 2023 *)

Formula

G.f. = -(x^17+x^16+x^15+2*x^14-x^12-x^11-4*x^10-7*x^9-10*x^8-14*x^7-17*x^6-18*x^5-16*x^4-12*x^3-8*x^2-4*x-1)/(x^10-2*x^5+1). - N. J. A. Sloane, Mar 29 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301670 Coordination sequence for node of type V1 in "krr" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 8, 12, 16, 22, 26, 26, 36, 36, 44, 42, 54, 50, 64, 56, 72, 66, 82, 70, 92, 80, 100, 86, 110, 94, 120, 100, 128, 110, 138, 114, 148, 124, 156, 130, 166, 138, 176, 144, 184, 154, 194, 158, 204, 168, 212, 174, 222, 182, 232, 188, 240, 198, 250, 202, 260
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, bottom row, 1st tiling.

Crossrefs

Cf. A301672.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{-1,0,1,2,1,0,-1,-1},{1,4,8,12,16,22,26,26,36,36},100] (* Paolo Xausa, Nov 15 2023 *)
  • PARI
    \\ See Links section.

Formula

Based on the b-file, the g.f. appears to be
(-2*x^9+x^8+5*x^7+16*x^6+21*x^5+22*x^4+19*x^3+12*x^2+5*x+1) / ((1+x)*(1-x^3)*(1-x^4)). - N. J. A. Sloane, Mar 25 2018
a(n) = (75*n + 9*(n - 4)*(-1)^n + 18*A163805(n+2) - 12*A049347(n+2))/18 for n >1. - Stefano Spezia, Jun 08 2024

Extensions

More terms from Rémy Sigrist, Mar 25 2018

A301672 Coordination sequence for node of type V2 in "krr" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 8, 13, 17, 20, 25, 30, 33, 37, 42, 46, 50, 54, 58, 63, 67, 70, 75, 80, 83, 87, 92, 96, 100, 104, 108, 113, 117, 120, 125, 130, 133, 137, 142, 146, 150, 154, 158, 163, 167, 170, 175, 180, 183, 187, 192, 196, 200, 204, 208, 213, 217, 220, 225, 230, 233
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, bottom row, 1st tiling.

Crossrefs

Cf. A301670.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{1,-1,2,-1,1,-1},{1,4,8,13,17,20,25},100] (* Paolo Xausa, Nov 15 2023 *)
  • PARI
    \\ See Links section.

Formula

Based on the b-file, the g.f. appears to be
(x^3+2*x^2+x+1)*(x^3+x^2+2*x+1) / ((1-x)*(1+x^2)*(1-x^3)). - N. J. A. Sloane, Mar 25 2018
a(n) = (75*n - 9*A163805(n+2) + 6*A049347(n+2))/18 for n > 0. - Stefano Spezia, Jun 08 2024

Extensions

More terms from Rémy Sigrist, Mar 25 2018

A301674 Coordination sequence for node of type V1 in "krs" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 8, 14, 16, 26, 22, 34, 36, 38, 44, 54, 46, 62, 64, 62, 72, 82, 70, 90, 92, 86, 100, 110, 94, 118, 120, 110, 128, 138, 118, 146, 148, 134, 156, 166, 142, 174, 176, 158, 184, 194, 166, 202, 204, 182, 212, 222, 190, 230, 232, 206, 240, 250, 214, 258, 260
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, bottom row, 2nd tiling.

Crossrefs

Cf. A301676.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{-1,0,2,2,0,-1,-1},{1,4,8,14,16,26,22,34,36},100] (* Paolo Xausa, Nov 15 2023 *)
  • PARI
    See Links section.

Formula

(a) G.f. = -(2*x^8-x^7-5*x^6-18*x^5-20*x^4-20*x^3-12*x^2-5*x-1)/((x+1)*(x-1)^2*(x^2+x+1)^2). (b) Satisfies the recurrence {( - 2*n^5 - 13*n^4 - 22*n^3 + 7*n^2 + 30*n)*a(n) + ( - 2*n^5 - 13*n^4 - 25*n^3 + n^2 + 39*n)*a(n + 1) + ( - 6*n^2 + 6*n)*a(n + 2) + (2*n^5 + 7*n^4 + 7*n^3 - 7*n^2 - 9*n)*a(n + 3) + (2*n^5 + 7*n^4 + 4*n^3 - 7*n^2 - 6*n)*a(n + 4) = 0, a(0) = 1, a(1) = 4, a(2) = 8, a(3) = 14, a(4) = 16, a(5) = 26}. - N. J. A. Sloane, Mar 28 2018
Equivalent conjecture: 9*a(n) = 40*n -18*(-1)^n -6*(-1)^n*A076118(n+1) +6*A049347(n) -4*A049347(n-1). - R. J. Mathar, Apr 01 2018

Extensions

More terms from Rémy Sigrist, Mar 28 2018
Previous Showing 11-20 of 53 results. Next