A301302 Partial sums of A301301.
1, 5, 13, 25, 41, 61, 86, 116, 150, 189, 232, 279, 332, 388, 448, 513, 581, 656, 734, 815, 902, 991, 1088, 1188, 1290, 1399, 1509, 1628, 1750, 1873, 2004, 2135, 2276, 2420, 2564, 2717, 2869, 3032, 3198, 3363, 3538, 3711, 3896, 4084, 4270, 4467, 4661, 4868, 5078, 5285, 5504
Offset: 0
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,2,-2,0,0,0,-1,1).
Crossrefs
Cf. A301301.
Programs
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 2, -2, 0, 0, 0, -1, 1},{1,5,13,25,41,61,86,116,150,189,232,279,332,388,448,513,581,656},51] (* Stefano Spezia, Mar 11 2025 *)
Formula
From Colin Barker, Apr 07 2018: (Start)
G.f.: (1 + x)^2*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 4*x^5 + 4*x^6 + 2*x^7 + 2*x^8 + x^9 + x^12 - 2*x^13 + x^14 - x^15) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11) for n>12. (End)
a(n) ~ 54n^2/25. - Stefano Spezia, Mar 11 2025
Comments