cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 95 results. Next

A334866 a(0) = 1, and then after, a(2n) = a(n)^2, a(2n+1) = A334747(a(n)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 9, 6, 256, 32, 64, 12, 81, 18, 36, 5, 65536, 512, 1024, 48, 4096, 128, 144, 24, 6561, 162, 324, 27, 1296, 72, 25, 10, 4294967296, 131072, 262144, 768, 1048576, 2048, 2304, 96, 16777216, 8192, 16384, 192, 20736, 288, 576, 20, 43046721, 13122, 26244, 243, 104976, 648, 729, 54, 1679616, 2592, 5184, 108, 625, 50, 100, 15
Offset: 0

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Comments

This irregular table can be represented as a binary tree. Each child to the left is obtained by squaring the parent, and each child to the right is obtained by applying A334747 to the parent:
1
|
...................2...................
4 3
16......../ \........8 9......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
256 32 64 12 81 18 36 5
65536 512 1024 48 4096 128 144 24 6561 162 324 27 1296 72 25 10
etc.
This is the mirror image of the tree in A334860.

Crossrefs

Cf. A334865 (inverse permutation), A334860 (mirror image).
Composition of permutations A005940 and A225546.
Cf. A001146 (left edge of the tree), A019565 (right edge), A334110 (the left children of the right edge).

Programs

Formula

a(0) = 1, and then after, a(2n) = a(n)^2, a(2n+1) = A334747(a(n)).
a(n) = A225546(A005940(1+n)).
For all n >= 0, A048675(a(n)) = A087808(n).

A227291 Characteristic function of squarefree numbers squared (A062503).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Ralf Stephan, Jul 05 2013

Keywords

Examples

			a(3) = 0 because 3 is not the square of a squarefree number.
a(4) = 1 because sqrt(4) = 2, a squarefree number.
		

Crossrefs

Programs

  • Haskell
    a227291 n = fromEnum $ (sum $ zipWith (*) mds (reverse mds)) == 1
       where mds = a225817_row n
    -- Reinhard Zumkeller, Jul 30 2013, Jul 07 2013
    
  • Maple
    A227291 := proc(n)
        local pe;
        if n = 0 then
            1;
        else
            for pe in ifactors(n)[2] do
                if op(2,pe) <> 2 then
                    return 0 ;
                end if;
            end do:
        end if;
        1 ;
    end proc:
    seq(A227291(n),n=1..100) ; # R. J. Mathar, Feb 07 2023
  • Mathematica
    Table[Abs[Sum[MoebiusMu[n/d], {d,Select[Divisors[n], SquareFreeQ[#] &]}]], {n, 1, 200}] (* Geoffrey Critzer, Mar 18 2015 *)
    Module[{nn=120,len,sfr},len=Ceiling[Sqrt[nn]];While[!SquareFreeQ[len],len++];sfr=(Select[Range[len],SquareFreeQ])^2; Table[If[MemberQ[ sfr,n],1,0],{n,nn}]] (* Harvey P. Dale, Nov 27 2024 *)
  • PARI
    a(n)=if(n<1, 0, direuler(p=2, n, 1+X^2)[n])
    
  • PARI
    A227291(n) = factorback(apply(e->(2==e), factor(n)[,2])); \\ Antti Karttunen, Jul 14 2022
    
  • PARI
    A227291(n) = (issquare(n) && issquarefree(sqrtint(n))); \\ Antti Karttunen, Jul 14 2022
    
  • Scheme
    (define (A227291 n) (if (= 1 n) n (* (if (= 2 (A067029 n)) 1 0) (A227291 (A028234 n))))) ;; Antti Karttunen, Jul 28 2017

Formula

Dirichlet g.f.: zeta(2s)/zeta(4s) = prod[prime p: 1+p^(-2s) ], see A008966.
a(n) = A008966(A037213(n)), when assumed A008966(0) = 0. - Reinhard Zumkeller, Jul 07 2013
a(n) = A063524(sum(A225817(n,k)*A225817(n,A000005(n)+1-k): k=1..A000005(n))). - Reinhard Zumkeller, Aug 01 2013
Multiplicative with a(p^e) = 1 if e=2, a(p^e) = 0 if e=1 or e>2. - Antti Karttunen, Jul 28 2017
Sum_{k=1..n} a(k) ~ 6*sqrt(n) / Pi^2. - Vaclav Kotesovec, Feb 02 2019
a(n) = A225569(A225546(n)-1). - Peter Munn, Oct 31 2019
From Antti Karttunen, Jul 18 2022: (Start)
a(n) = A010052(n) * A008966(A000196(n)).
a(n) = Sum_{d|n} A008836(n/d) * A307430(d).
a(n) = Sum_{d|n} A007427(n/d) * A322327(d).
(End)

A334747 Let p be the smallest prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller primes.

Original entry on oeis.org

2, 3, 6, 8, 10, 5, 14, 12, 18, 15, 22, 24, 26, 21, 30, 32, 34, 27, 38, 40, 42, 33, 46, 20, 50, 39, 54, 56, 58, 7, 62, 48, 66, 51, 70, 72, 74, 57, 78, 60, 82, 35, 86, 88, 90, 69, 94, 96, 98, 75, 102, 104, 106, 45, 110, 84, 114, 87, 118, 120, 122, 93, 126, 128, 130, 55
Offset: 1

Views

Author

Peter Munn, May 09 2020

Keywords

Comments

A bijection from the positive integers to the nonsquares, A000037.
A003159 (which has asymptotic density 2/3) lists index n such that a(n) = 2n. The sequence maps the terms of A003159 1:1 onto A036554, defining a bijection between them.
Similarly, bijections are defined from A007417 to A325424, from A325424 to A145204\{0}, and from the first in each of the following pairs to the nonsquare integers in the second: (A145204\{0}, A036668), (A036668, A007417), (A036554, A003159), (A332820, A332821), (A332821, A332822), (A332822, A332820). Note that many of these are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.
Starting from 1, and iterating the sequence as a(1) = 2, a(2) = 3, a(3) = 6, a(6) = 5, a(5) = 10, etc., runs through the squarefree numbers in the order they appear in A019565. - Antti Karttunen, Jun 08 2020

Examples

			168 = 42*4 has squarefree part 42 (and square part 4). The smallest prime absent from 42 = 2*3*7 is 5 and the product of all smaller primes is 2*3 = 6. So a(168) = 168*5/6 = 140.
		

Crossrefs

Permutation of A000037.
Row 2, and therefore column 2, of A331590. Cf. A334748 (row 3).
A007913, A034386, A053669, A225546 are used in formulas defining the sequence.
The formula section details how the sequence maps the terms of A002110, A003961, A019565; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
Subsequences: A016825 (odd bisection), A036554, A329575.
Bijections are defined that relate to A003159, A007417, A036668, A145204, A325424, A332820, A332821, A332822.
Cf. also binary trees A334860, A334866 and A334870 (a left inverse).

Programs

  • PARI
    a(n) = {my(c=core(n), m=n); forprime(p=2, , if(c % p, m*=p; break, m/=p)); m;} \\ Michel Marcus, May 22 2020

Formula

a(n) = n * m / A034386(m-1), where m = A053669(A007913(n)).
a(n) = A331590(2, n) = A225546(2 * A225546(n)).
a(A019565(n)) = A019565(n+1).
a(k * m^2) = a(k) * m^2.
a(A003961(n)) = 2 * A003961(n).
a(2 * A003961(n)) = A003961(a(n)).
a(A002110(n)) = prime(n+1).
A048675(a(n)) = A048675(n) + 1.
A008833(a(n)) = A008833(n).
A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
a(A003159(n)) = A036554(n) = 2 * A003159(n).
A334870(a(n)) = n. - Antti Karttunen, Jun 08 2020

A334860 a(0) = 1, a(1) = 2, after which, a(2n) = A334747(a(n)), a(2n+1) = a(n)^2.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 8, 16, 5, 36, 18, 81, 12, 64, 32, 256, 10, 25, 72, 1296, 27, 324, 162, 6561, 24, 144, 128, 4096, 48, 1024, 512, 65536, 15, 100, 50, 625, 108, 5184, 2592, 1679616, 54, 729, 648, 104976, 243, 26244, 13122, 43046721, 20, 576, 288, 20736, 192, 16384, 8192, 16777216, 96, 2304, 2048, 1048576, 768, 262144, 131072, 4294967296, 30
Offset: 0

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Comments

This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A334747 to the parent, and each child to the right is obtained by squaring the parent:
1
|
...................2...................
3 4
6......../ \........9 8......../ \........16
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 36 18 81 12 64 32 256
10 25 72 1296 27 324 162 6561 24 144 128 4096 48 1024 512 65536
etc.
This is the mirror image of the tree in A334866.
Fermi-Dirac primes, A050376, occur at rightward growing branches that originate from primes situated at the left edge.
The tree illustrated in A163511 is expanded as x -> 2*x for the left child and x -> A003961(x) for the right child, while this tree is expanded as x -> A225546(2*A225546(x)) for the left child, and x -> A225546(A003961(A225546(x))) for the right child.

Crossrefs

Cf. A000290, A225546, A334204, A334747, A334859 (inverse), A334866 (mirror image).
Cf. A001146 (right edge of the tree), A019565 (left edge), A334110 (the right children of the left edge).
Composition of permutations A163511 and A225546.

Programs

Formula

a(0) = 1, a(1) = 2; and for n > 0, a(2n) = A334747(a(n)), a(2n+1) = a(n)^2.
a(n) = A225546(A163511(n)).
For n >= 0, a(2^n) = A019565(1+n), a(2^((2^n)-1)) = A000040(1+n).
A334109(a(n)) = A334204(n).
It seems that for n >= 1, A048675(a(n)) = A135529(n) = A048675(A163511(n)).

A133466 Positive integers k for which there is exactly one integer i in {1,2,3,...,k-1} such that i*k is a square.

Original entry on oeis.org

4, 8, 12, 20, 24, 28, 40, 44, 52, 56, 60, 68, 76, 84, 88, 92, 104, 116, 120, 124, 132, 136, 140, 148, 152, 156, 164, 168, 172, 184, 188, 204, 212, 220, 228, 232, 236, 244, 248, 260, 264, 268, 276, 280, 284, 292, 296, 308, 312, 316, 328, 332, 340, 344, 348, 356
Offset: 1

Views

Author

John W. Layman, Nov 28 2007

Keywords

Comments

It appears that all terms of this sequence are exactly four times those of the squarefree integers (A005117).
The observed behavior is true for all n. All positive integers n are written uniquely as k*m^2 where k is squarefree, k >=1, m >= 1. The square multiples of n are j^2*k*n, j >= 1. We seek n with exactly 1 multiple that is square and less than n^2. If m = 1, there are no such multiples as we have k = n, so the least square multiple is n^2. If m >= 2, k*n is square and less than n^2. However, 4*k*n also qualifies as square and less than n^2 if m > 2. So the qualifying values of n are those with m=2. - Peter Munn, Nov 28 2019
The asymptotic density of this sequence is 3/(2*Pi^2). - Amiram Eldar, Mar 08 2021

Examples

			4 is in the sequence because among the products 1*4,2*4,3*4 = 4,8,12 there is exactly one square.
		

Crossrefs

Programs

Formula

A057918(a(n)) = 1. - Reinhard Zumkeller, Mar 27 2012
From Peter Munn, Nov 28 2019: (Start)
a(n) = 4 * A005117(n).
{a(n)} = {A225546(A007283(n)) : n >= 0}, where {a(n)} denotes the set of integers in the sequence.
(End)
Sum_{n>=1} 1/a(n)^s = zeta(s)/(4^s*zeta(2*s)), s>1. - Amiram Eldar, Sep 26 2023

A252849 Numbers with an even number of square divisors.

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 84, 88, 90, 92, 98, 99, 100, 104, 108, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 144, 147, 148
Offset: 1

Views

Author

Walker Dewey Anderson, Mar 22 2015

Keywords

Comments

Closed lockers in the locker problem where the student numbers are the set of perfect squares.
The locker problem is a classic mathematical problem. Imagine a row containing an infinite number of lockers numbered from one to infinity. Also imagine an infinite number of students numbered from one to infinity. All of the lockers begin closed. The first student opens every locker that is a multiple of one, which is every locker. The second student closes every locker that is a multiple of two, so all of the even-numbered lockers are closed. The third student opens or closes every locker that is a multiple of three. This process continues for all of the students.
A variant on the locker problem is when not all student numbers are considered; in the case of this sequence, only the square-numbered students open and close lockers. The sequence here is a list of the closed lockers after all of the students have gone.
From Amiram Eldar, Jul 07 2020: (Start)
Numbers k such that the largest square dividing k (A008833) is not a fourth power.
The asymptotic density of this sequence is 1 - Pi^2/15 = 1 - A182448 = 0.342026... (Cesàro, 1885). (End)
Closed under application of A331590: for n, k >= 1, A331590(a(n), k) is in the sequence. - Peter Munn, Sep 18 2020

Crossrefs

Complement of A252895.
A046951, A335324 are used in a formula defining this sequence.
Disjoint union of A336593 and A336594.
A030140, A038109, A082293, A217319 are subsequences.
Ordered 3rd trisection of A225546.

Programs

Formula

From Peter Munn, Sep 18 2020: (Start)
Numbers k such that A046951(k) mod 2 = 0.
Numbers k such that A335324(k) > 1.
(End)

A334870 If n is a square, a(n) = A000196(n), and for nonsquare n, let p be the smallest prime dividing the squarefree part of n. Divide n by p and multiply by the product of all smaller primes.

Original entry on oeis.org

1, 1, 2, 2, 6, 3, 30, 4, 3, 5, 210, 8, 2310, 7, 10, 4, 30030, 9, 510510, 24, 14, 11, 9699690, 12, 5, 13, 18, 120, 223092870, 15, 6469693230, 16, 22, 17, 42, 6, 200560490130, 19, 26, 20, 7420738134810, 21, 304250263527210, 840, 54, 23, 13082761331670030, 32, 7, 25, 34, 9240, 614889782588491410, 27, 66, 28, 38, 29
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Comments

Each natural numbers occurs exactly twice in this sequence.
In binary trees like A334860 and A334866, for n > 2, a(n) gives the parent node of node n.
For nonsquare numbers, n, with squarefree part A019565(k) and square part m, a(n) is the number with squarefree part A019565(k-1) and square part m. - Peter Munn, Jul 14 2020

Crossrefs

Programs

  • Mathematica
    Array[If[IntegerQ[#2], #2, #1/#2*Product[Prime@i, {i, PrimePi@#2 - 1}] & @@ {#1, FactorInteger[#2 /. (c_ : 1)*a_^(b_ : 0) :> (c*a^b)^2][[1, 1]]}] & @@ {#, Sqrt[#]} &, 58] (* Michael De Vlieger, Jun 26 2020 *)
  • PARI
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));

Formula

a(A334747(n)) = n.
a(A000040(n)) = A002110(n-1).
a(n^2) = n.
a(n) = A225546(A252463(A225546(n))). - Peter Munn, Jun 08 2020

A331592 a(n) is the smaller of the number of terms in the factorizations of n into (1) powers of distinct primes and (2) powers of squarefree numbers with distinct exponents that are powers of 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

See A329332 for a description of the relationship between the two factorizations. From this relationship we get the formula a(n) = min(A001221(n), A001221(A225546(n))).
The result depends only on the prime signature of n.
k first appears at A191555(k).

Examples

			The factorization of 6 into powers of distinct primes is 6 = 2^1 * 3^1 = 2 * 3, which has 2 terms. Its factorization into powers of squarefree numbers with distinct exponents that are powers of 2 is 6 = 6^(2^0) = 6^1, which has 1 term. So a(6) is min(2,1) = 1.
The factorization of 40 into powers of distinct primes is 40 = 2^3 * 5^1 = 8 * 5, which has 2 terms. Its factorization into powers of squarefree numbers with distinct exponents that are powers of 2 is 40 = 10^(2^0) * 2^(2^1) = 10^1 * 2^2 = 10 * 4, which has 2 terms. So a(40) is min(2,2) = 2.
		

Crossrefs

Sequences with related definitions: A331308, A331591, A331593.
A003961, A225546 are used to express relationship between terms of this sequence.
Differs from = A071625 for the first time at n=216, where a(216) = 2, while A071625(216) = 1.

Programs

Formula

a(n) = min(A001221(n), A331591(n)) = min(A001221(n), A001221(A293442(n))).
a(A225546(n)) = a(n).
a(A003961(n)) = a(n).
a(n^2) = a(n).

A331751 Numbers k such that A048675(sigma(k)) is equal to A048675(2*k).

Original entry on oeis.org

2, 6, 27, 28, 84, 270, 496, 1053, 1120, 1488, 1625, 1638, 3360, 3780, 4875, 8128, 10530, 24384, 66960, 147420, 167400, 406224, 611226, 775000, 872960, 943250, 1097280, 1245699, 1255338, 1303533, 1464320, 1686400, 1740024, 1922375, 1952500, 2011625, 2193408, 2325000, 2611440, 2618880, 2829750, 2941029, 4392960
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Comments

Numbers k such that A097248(sigma(k)) is equal to A097248(2*k).
Numbers k such that A331750(k) is equal to 1+A048675(k), which in turn is equal to A048675(A225546(2*k)) = A048675(2*A225546(k)).
Among the first 60 terms, 15 are odd: 27, 1053, 1625, 4875, 1245699, 1303533, 1922375, 2011625, 2941029, 5767125, 6034875, 12733875, 17137575, 26316675, 29362905, and only 1053 = 3^4 * 13 is in A228058.
Note that the condition A090880(sigma(k)) == A090880(2*k) appears to be much more constrained.

Examples

			For n = 1053 = 3^4 * 13^1, A331750(1053) = A331750(81) + A331750(13) = 32+9 = 41, while A048675(2*1053) = A048675(2)+A048675(81)+A048675(13) = 1+8+32 = 41 also, thus 1053 is included in this sequence.
For n = 3360 = 2^5 * 3^1 * 5^1 * 7^1, A331750(3360) = A331750(32)+A331750(3)+A331750(5)+A331750(7) = 12+2+3+3 = 20, while A048675(2*3360) = A048675(2)+A048675(32)+A048675(3)+A048675(5)+A048675(7) = 1+5+2+4+8 = 20 also, thus 3360 is included in this sequence.
		

Crossrefs

Programs

A337533 1 together with nonsquares whose square part's square root is in the sequence.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68
Offset: 1

Views

Author

Peter Munn, Aug 31 2020

Keywords

Comments

The appearance of a number is determined by its prime signature.
Every squarefree number is present, as the square root of the square part of a squarefree number is 1. Other 4th-power-free numbers are present if and only if they are nonsquare.
If the square part of nonsquarefree k is a 4th power, k does not appear.
Every positive integer k is the product of a unique subset S_k of the terms of A050376, which are arranged in array form in A329050 (primes in column 0, squares of primes in column 1, 4th powers of primes in column 2 and so on). k > 1 is in this sequence if and only if the members of S_k occur in consecutive columns of A329050, starting with column 0.
If the qualifying condition in the previous paragraph was based on the rows instead of the columns of A329050, we would get A055932. The self-inverse function defined by A225546 transposes A329050. A225546 also has multiplicative properties such that if we consider A055932 and this sequence as sets, A225546(.) maps the members of either set 1:1 onto the other set.

Examples

			4 is square and not 1, so 4 is not in the sequence.
12 = 3 * 2^2 is nonsquare, and has square part 4, whose square root (2) is in the sequence. So 12 is in the sequence.
32 = 2 * 4^2 is nonsquare, but has square part 16, whose square root (4) is not in the sequence. So 32 is not in the sequence.
		

Crossrefs

Complement of A337534.
Closed under A000188(.).
A209229, A267116 are used in a formula defining this sequence.
Subsequence of A164514.
A007913, A008833, A008835, A335324 give the squarefree, square and comparably related parts of a number.
Related to A055932 via A225546.

Programs

  • Maple
    S:= {1}:
    for n from 2 to 100 do
      if not issqr(n) then
        F:= ifactors(n)[2];
        s:= mul(t[1]^floor(t[2]/2),t=F);
        if member(s,S) then S:= S union {n} fi
      fi
    od:
    sort(convert(S,list)); # Robert Israel, Jan 07 2025
  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[100], # == 1 || pow2Q[1 + BitOr @@ (FactorInteger[#][[;; , 2]])] &] (* Amiram Eldar, Sep 18 2020 *)

Formula

Numbers m such that A209229(A267116(m) + 1) = 1.
If A008835(a(n)) > 1 then A335324(a(n)) > 1.
If A008833(a(n)) > 1 then A007913(a(n)) > 1.
Previous Showing 61-70 of 95 results. Next