A305189
a(n) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 + 12 + ... + (up to n).
Original entry on oeis.org
1, 2, 5, 9, 25, 31, 38, 87, 96, 106, 206, 218, 231, 400, 415, 431, 687, 705, 724, 1085, 1106, 1128, 1612, 1636, 1661, 2286, 2313, 2341, 3125, 3155, 3186, 4147, 4180, 4214, 5370, 5406, 5443, 6812, 6851, 6891, 8491, 8533, 8576, 10425, 10470, 10516, 12632
Offset: 1
a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2 + 3 = 5;
a(4) = 1*2 + 3 + 4 = 9;
a(5) = 1*2 + 3 + 4*5 = 25;
a(6) = 1*2 + 3 + 4*5 + 6 = 31;
a(7) = 1*2 + 3 + 4*5 + 6 + 7 = 38;
a(8) = 1*2 + 3 + 4*5 + 6 + 7*8 = 87;
a(9) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 = 96;
a(10) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10 = 106;
a(11) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 = 206;
a(12) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 + 12 = 218; etc.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,3,-3,0,-3,3,0,1,-1).
-
seq(coeff(series((x*(1+x+3*x^2+x^3+13*x^4-3*x^5-2*x^6+4*x^7))/((1-x)^4*(1+x+x^2)^3),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Sep 16 2018
-
Table[3*Floor[n/3]*(Floor[n/3] + 1)/2 + Floor[(n + 1)/3]*(3*Floor[(n + 1)/3]^2 - 1) + n*(Floor[(n - 1)/3] - Floor[(n - 2)/3]), {n, 50}]
LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1 }, {1, 2, 5, 9, 25, 31, 38, 87, 96, 106}, 50] (* Stefano Spezia, Sep 16 2018 *)
-
Vec(x*(1 + x + 3*x^2 + x^3 + 13*x^4 - 3*x^5 - 2*x^6 + 4*x^7) / ((1 - x)^4*(1 + x + x^2)^3) + O(x^40)) \\ Colin Barker, Sep 16 2018
A304487
a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n) mod 2))/6.
Original entry on oeis.org
1, 4, 15, 36, 73, 128, 207, 312, 449, 620, 831, 1084, 1385, 1736, 2143, 2608, 3137, 3732, 4399, 5140, 5961, 6864, 7855, 8936, 10113, 11388, 12767, 14252, 15849, 17560, 19391, 21344, 23425, 25636, 27983, 30468, 33097, 35872, 38799, 41880, 45121, 48524, 52095
Offset: 1
For n = 1 the matrix A is
1
with trace Tr(A) = a(1) = 1.
For n = 2 the matrix A is
1, 2
4, 3
with Tr(A) = a(2) = 4.
For n = 3 the matrix A is
1, 2, 3
8, 9, 4
7, 6, 5
with Tr(A) = a(3) = 15.
For n = 4 the matrix A is
1, 2, 3, 4
12, 13, 14, 5
11, 16, 15, 6
10, 9, 8, 7
with Tr(A) = a(4) = 36.
Cf.
A126224 (determinant of the matrix A),
A317298 (first differences).
-
a_n:=List([1..43], n->(3 + 2*n - 3*n^2 + 4*n^3 - 3*RemInt(-1 + n, 2))/6);
-
List([1..43],n->(3+2*n-3*n^2+4*n^3-3*((-1+n) mod 2))/6); # Muniru A Asiru, Sep 17 2018
-
I:=[1,4,15,36,73]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..43]]; // Vincenzo Librandi, Aug 26 2018
-
seq((3+2*n-3*n^2+4*n^3-3*modp((-1+n),2))/6,n=1..43); # Muniru A Asiru, Sep 17 2018
-
Table[1/6 (3 + 2 n - 3 n^2 + 4 n^3 - 3 Mod[-1 + n, 2]), {n, 1, 43}] (* or *)
CoefficientList[ Series[x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)), {x, 0, 43}], x] (* or *)
LinearRecurrence[{3, -2, -2, 3, -1}, {1, 4, 15, 36, 73}, 43]
-
a(n):=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6$ makelist(a(n), n, 1, 43);
-
Vec(x*(1 + x + 5*x^2 + x^3)/((-1 + x)^4*(1 + x)) + O(x^44))
-
a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n)%2))/6
A318868
a(n) = 1^2 + 3^4 + 5^6 + 7^8 + 9^10 + 11^12 + 13^14 + ... + (up to n).
Original entry on oeis.org
1, 1, 4, 82, 87, 15707, 15714, 5780508, 5780517, 3492564909, 3492564920, 3141920941630, 3141920941643, 3940518306640919, 3940518306640934, 6572348874019531544, 6572348874019531561, 14069656800941744522553, 14069656800941744522572, 37604043114346899937878154
Offset: 1
a(1) = 1;
a(2) = 1^2 = 1;
a(3) = 1^2 + 3 = 4;
a(4) = 1^2 + 3^4 = 82;
a(5) = 1^2 + 3^4 + 5 = 87;
a(6) = 1^2 + 3^4 + 5^6 = 15707;
a(7) = 1^2 + 3^4 + 5^6 + 7 = 15714;
a(8) = 1^2 + 3^4 + 5^6 + 7^8 = 5780508;
a(9) = 1^2 + 3^4 + 5^6 + 7^8 + 9 = 5780517;
a(10) = 1^2 + 3^4 + 5^6 + 7^8 + 9^10 = 3492564909;
a(11) = 1^2 + 3^4 + 5^6 + 7^8 + 9^10 + 11 = 3492564920;
a(12) = 1^2 + 3^4 + 5^6 + 7^8 + 9^10 + 11^12 = 3141920941630, etc.
-
Table[(2*Floor[(n - 1)/2] + 1)*Mod[n, 2] + Sum[(2*i - 1)^(2*i), {i, Floor[n/2]}], {n, 25}]
-
a(n) = (2*((n-1)\2) + 1)*(n % 2) + sum(i=1, n\2, (2*i - 1)^(2*i)); \\ Michel Marcus, Sep 18 2018
A319258
a(n) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 + ... + (up to n).
Original entry on oeis.org
1, 3, 7, 11, 16, 41, 48, 56, 120, 130, 141, 262, 275, 289, 485, 501, 518, 807, 826, 846, 1246, 1268, 1291, 1820, 1845, 1871, 2547, 2575, 2604, 3445, 3476, 3508, 4532, 4566, 4601, 5826, 5863, 5901, 7345, 7385, 7426, 9107, 9150, 9194, 11130, 11176, 11223
Offset: 1
a(1) = 1;
a(2) = 1 + 2 = 3;
a(3) = 1 + 2*3 = 7;
a(4) = 1 + 2*3 + 4 = 11;
a(5) = 1 + 2*3 + 4 + 5 = 16;
a(6) = 1 + 2*3 + 4 + 5*6 = 41;
a(7) = 1 + 2*3 + 4 + 5*6 + 7 = 48;
a(8) = 1 + 2*3 + 4 + 5*6 + 7 + 8 = 56;
a(9) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 = 120;
a(10) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 = 130;
a(11) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11 = 141;
a(12) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 = 262; etc.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,3,-3,0,-3,3,0,1,-1).
-
Table[n (1 + Floor[(n - 2)/3] - Floor[n/3]) + 3 Floor[n/3]^2 (1 + Floor[n/3]) + Floor[(n + 2)/3] (3 Floor[(n + 2)/3] - 1)/2, {n, 50}]
-
Vec(x*(1 + 2*x + 4*x^2 + x^3 - x^4 + 13*x^5 - 2*x^6 - x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^3) + O(x^40)) \\ Colin Barker, Sep 16 2018
A300254
a(n) = 25*(n + 1)*(4*n + 3)*(5*n + 4)/3.
Original entry on oeis.org
100, 1050, 3850, 9500, 19000, 33350, 53550, 80600, 115500, 159250, 212850, 277300, 353600, 442750, 545750, 663600, 797300, 947850, 1116250, 1303500, 1510600, 1738550, 1988350, 2261000, 2557500, 2878850, 3226050, 3600100, 4002000, 4432750, 4893350, 5384800, 5908100, 6464250
Offset: 0
- Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 32-37 [the equation 1.7 contains a typo].
-
List([0..40], n -> 25*(n+1)*(4*n+3)*(5*n+4)/3);
-
[div(25*(n+1)*(4*n+3)*(5*n+4), 3) for n in 0:40] |> println
-
[25*(n+1)*(4*n+3)*(5*n+4)/3: n in [0..40]];
-
Table[25 (n + 1) (4 n + 3) (5 n + 4)/3, {n, 0, 40}]
-
makelist(25*(n+1)*(4*n+3)*(5*n+4)/3, n, 0, 40);
-
vector(40, n, n--; 25*(n+1)*(4*n+3)*(5*n+4)/3)
-
Vec(50*(2 + 13*x + 5*x^2) / (1 - x)^4 + O(x^60)) \\ Colin Barker, Mar 13 2018
-
[25*(n+1)*(4*n+3)*(5*n+4)/3 for n in range(40)]
-
[25*(n+1)*(4*n+3)*(5*n+4)/3 for n in (0..40)]
A319438
a(n) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11^12 + 13^14 - ... + (up to n).
Original entry on oeis.org
1, 1, -2, -80, -75, 15545, 15538, -5749256, -5749247, 3481035145, 3481035134, -3134947341576, -3134947341563, 3934241438357713, 3934241438357698, -6564474114274532912, -6564474114274532895, 14056519977953450458097, 14056519977953450458078
Offset: 1
a(1) = 1;
a(2) = 1^2 = 1;
a(3) = 1^2 - 3 = -2;
a(4) = 1^2 - 3^4 = -80;
a(5) = 1^2 - 3^4 + 5 = -75;
a(6) = 1^2 - 3^4 + 5^6 = 15545;
a(7) = 1^2 - 3^4 + 5^6 - 7 = 15538;
a(8) = 1^2 - 3^4 + 5^6 - 7^8 = -5749256;
a(9) = 1^2 - 3^4 + 5^6 - 7^8 + 9 = -5749247;
a(10) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 = 3481035145;
a(11) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11 = 3481035134;
a(12) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11^12 = -3134947341576; etc .
-
Table[n*Mod[n, 2]*(-1)^(Floor[n/2]) + Sum[(2*i - 1)^(2*i)*(-1)^(i - 1), {i, Floor[n/2]}], {n, 30}]
Comments