cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A374588 Numbers whose maximum exponent in their prime factorization is a composite number.

Original entry on oeis.org

16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Comments

Subsequence of A322448 and first differs from it at n = 138: A322448(138) = 2592 = 2^5 * 3^4 is not a term of this sequence.
The asymptotic density of this sequence is d = Sum_{k composite} (1/zeta(k+1) - 1/zeta(k)) = 0.05296279266796920306... . The asymptotic density of this sequence within the nonsquarefree numbers (A013929) is d / (1 - 1/zeta(2)) = 0.13508404411123191108... .

Crossrefs

Complement of A074661 within A013929.
Subsequence of A322448 and A322449 \ {1}.
Similar sequences: A368714, A369937, A369938, A369939, A374589, A374590.

Programs

  • Maple
    filter:= proc(n) local m;
      m:= max(ifactors(n)[2][..,2]);
      m > 1 and not isprime(m)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jul 14 2024
  • Mathematica
    Select[Range[1200], CompositeQ[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    iscomposite(n) = n > 1 && !isprime(n);
    is(n) = n > 1 && iscomposite(vecmax(factor(n)[, 2]));

A368541 The number of exponential divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

The terms of A049419 that are larger than 1, since A049419(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, numdiv(f[i, 2])); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A049419(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (A327837 - A059956)/A229099 = 2.53623753427906735929... .

A381391 Number of k <= 10^n that are neither squarefree nor prime powers (i.e., k is in A126706).

Original entry on oeis.org

0, 29, 367, 3866, 39098, 391838, 3920154, 39205902, 392069187, 3920718974, 39207261564, 392072817656, 3920728751139, 39207289143932, 392072896183208, 3920728975677128, 39207289797472001, 392072898095046811, 3920728981307675534, 39207289814141997459, 392072898144605471040
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2025

Keywords

Examples

			Let S = A126706.
a(1) = 0 since the smallest term in S is 12.
a(2) = 29 since S(1..29) = {12, 18, 20, 24, ..., 99, 100}, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[10^n - Sum[PrimePi@ Floor[10^(n/k)], {k, 2, Floor[Log2[10^n]]}] - Sum[MoebiusMu[k]*Floor[10^n/(k^2)], {k, Floor[Sqrt[10^n]]}], {n, 10}]
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, mobius
    def A381391(n):
        m = 10**n
        return int(-sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length()))-sum(mobius(k)*(m//k**2) for k in range(2, isqrt(m)+1))) # Chai Wah Wu, Feb 23 2025

Formula

a(n) = 10^n - Sum_{k = 2..log_2(10^n)} pi(floor(10^(n/k))) - Sum_{k = 1..floor(sqrt(10^n))} mu(k)*floor(10^n/k^2), where pi = A000720 and mu = A008683.
a(n) = A011557(n) - A071172(n) - A267574(n).

A080058 Greedy powers of (1/zeta(2)): Sum_{n>=1} (1/zeta(2))^a(n) = 1, where 1/zeta(2) = 6/Pi^2 = .607927101854...

Original entry on oeis.org

1, 2, 8, 12, 14, 16, 25, 39, 42, 44, 46, 49, 51, 53, 59, 70, 73, 78, 81, 83, 85, 86, 101, 103, 105, 116, 118, 119, 126, 130, 135, 137, 139, 142, 144, 147, 148, 158, 161, 163, 170, 171, 178, 181, 186, 188, 190, 192, 194, 195, 204, 207, 209, 212, 216, 219, 224, 229
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Jan 23 2003

Keywords

Comments

The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series Sum_{k=1..n} x^a(k) to exceed unity. A heuristic argument suggests that the limit of a(n)/n is m - Sum_{n>=m} log(1 + x^n)/log(x) = 3.66565771136..., where x=(1/zeta(2)) and m=floor(log(1-x)/log(x))=1.
See A077468 for Mathematica program by Robert G. Wilson v.

Examples

			a(3)=8 since (1/zeta(2)) +(1/zeta(2))^2 +(1/zeta(2))^8 < 1 and (1/zeta(2)) +(1/zeta(2))^2 +(1/zeta(2))^k > 1 for 2<k<8.
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} floor(g_k) where g_1=1, g_{n+1}=log_x(x^frac(g_n) - x) (n>0) at x=(1/zeta(2)) and frac(y) = y - floor(y).

A191102 Decimal expansion of (1/3)*arccos(6/Pi^2-1).

Original entry on oeis.org

6, 5, 7, 8, 9, 3, 3, 8, 3, 9, 6, 2, 5, 2, 5, 9, 3, 1, 8, 0, 8, 6, 9, 4, 3, 7, 7, 1, 0, 6, 0, 6, 6, 7, 8, 9, 1, 9, 6, 1, 3, 2, 7, 4, 8, 4, 9, 8, 1, 1, 6, 6, 1, 6, 3, 8, 0, 8, 4, 3, 5, 8, 9, 9, 9, 7, 5, 9, 1, 1, 9, 4, 9, 5, 4, 3, 8, 9, 2, 7, 9, 2, 2, 0, 9, 1, 4, 4, 4, 9, 8, 6, 0, 6, 0, 5, 0, 7, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2011

Keywords

Examples

			.65789338396252593180869437710606678919613274849811661638...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(ArcCos[6/Pi^2-1])/3,10,120][[1]] (* Harvey P. Dale, Nov 29 2015 *)
  • PARI
    acos(6/Pi^2-1)/3 \\ Michel Marcus, Sep 19 2017

A373058 The sum of the aliquot coreful divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 6, 3, 6, 14, 6, 10, 18, 5, 12, 14, 30, 36, 30, 22, 15, 42, 7, 10, 26, 24, 42, 30, 21, 62, 34, 96, 15, 38, 70, 39, 42, 66, 30, 46, 90, 14, 33, 80, 78, 126, 98, 58, 39, 90, 11, 62, 30, 42, 126, 66, 60, 102, 70, 216, 21, 74, 30, 114, 51, 78, 150, 78, 82, 126, 13
Offset: 1

Views

Author

Amiram Eldar, May 21 2024

Keywords

Comments

A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
The positive terms of A336563: if k is a squarefree number (A005117) then the only coreful divisor of k is k itself, so k has no aliquot coreful divisors.
The number of the aliquot coreful divisors of the n-th nonsquarefree number is A368039(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; Select[Array[s, 300], # > 0 &]
  • PARI
    lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - 1) - k, ", "))); }
    
  • Python
    from math import prod, isqrt
    from sympy import mobius, factorint
    def A373058(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod((p**(e+1)-1)//(p-1)-1 for p, e in factorint(m).items())-m # Chai Wah Wu, Jul 22 2024

Formula

a(n) = A336563(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (A065487 - 1)/(1-1/zeta(2))^2 = 1.50461493205911656114... .

A273093 Decimal expansion of the probability that three positive integers are pairwise not coprime.

Original entry on oeis.org

1, 7, 4, 2, 1, 9, 7, 8, 3, 0, 3, 4, 7, 2, 4, 7, 0, 0, 5, 5, 8, 5, 7, 4, 0, 7, 2, 1, 8, 0, 5, 3, 4, 6, 9, 1, 6, 5, 1, 1, 0, 5, 7, 5, 1, 8, 7, 0, 3, 1, 3, 5, 5, 7, 2, 3, 3, 2, 6, 3, 7, 0, 5, 1, 6, 4, 6, 0, 0, 7, 3, 6, 0, 3, 1, 0, 6, 7, 9, 3, 2, 6, 2, 5, 3, 6, 5, 9, 3, 0, 3, 5, 9, 1, 0, 6, 6, 0, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, May 15 2016

Keywords

Examples

			0.1742197830347247005585740721805346916511057518703135572332637051646...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.5.1 Carefree Couples, p. 110.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 100; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]];
    P = (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n - 1]/(n - 1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]];
    Q = NSum[-(2 + (-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 3digits, Method -> "AlternatingSigns"]//Exp;
    F3 = 1 - 18/Pi^2 + 3P - Q;
    RealDigits[F3, 10, digits][[1]]
  • PARI
    1 - 3/zeta(2) + 3 * prodeulerrat(1 - (2*p-1)/p^3) - prodeulerrat(1 - (3*p-2)/p^3) \\ Amiram Eldar, Mar 03 2021

Formula

Equals 1 - 18/Pi^2 + 3P - Q, where P is A065464 and Q is A065473.

A372634 Numerators of the reduced fraction of all rational number representations (a/b, with a and b being integers) which can themselves be reduced by at least one common prime factor of at most prime(n).

Original entry on oeis.org

1, 1, 9, 457, 11213, 273347, 79439651, 5761023199, 277886746829, 33449007905699, 32197332748181219, 2322572170370125769, 3907895853135787075289, 657439531892484346088851, 63187594618979703535273733, 13660992716321028635960170769
Offset: 1

Views

Author

Brian Lee Burtner, May 08 2024

Keywords

Comments

The numerators of the fraction F(n) = a(n)/A072044(n) may be generated directly by use of inclusion-exclusion; e.g., 1/4 + 1/9 + 1/25 - 1/225 - 1/100 - 1/36 + 1/900 = 9/25.
Following Euler, they may also be generated via products.
a(n)/A072044(n) -> 1 - 6/Pi^2 (provable via Euler, see references). This value is the supremal proportion of all rational number representations a/b that are reducible by some common factor (or, more broadly: the proportion of all pairs of integers a,b that are not coprime).
A072045(n)/A072044(n) gives the complementary proportion of all rational number representations that are irreducible by any prime factor of at most A000040(n). This analogously converges to 6/Pi^2, the infimal proportion of all rational number representations a/b that are simply irreducible.

Examples

			For n=3, 1 - (3/4)*(8/9)*(24/25) = 9/25.
Exactly 9/25 of all rational number representations are reducible by at least one prime factor of at most 5.
		

References

  • Leonhard Euler, Introductio In Analysin Infinitorum Vol 1, 1748, p. 474.

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*(1-1/ithprime(n)^2)) end:
    a:= n-> numer(1-b(n)):
    seq(a(n), n=1..16);  # Alois P. Heinz, May 11 2024
  • Mathematica
    a[n_]:=Numerator[1-Product[1-1/Prime[k]^2,{k,n}]]; Array[a,16] (* Stefano Spezia, May 11 2024 *)
  • PARI
    a(n) = numerator(1 - prod(k=1, n, (prime(k)^2-1)/prime(k)^2)); \\ Michel Marcus, May 08 2024

Formula

a(n) = numerator(1 - Product_{k=1..n} (1 - 1/prime(k)^2)).
Previous Showing 21-28 of 28 results.