cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 65 results. Next

A235383 Fibonacci numbers that are the product of other Fibonacci numbers.

Original entry on oeis.org

8, 144
Offset: 1

Views

Author

Robert C. Lyons, Jan 08 2014

Keywords

Comments

This sequence and A229037 and A235265 are winners in the contest held at the 2014 AMS/MAA Joint Mathematics Meetings. - T. D. Noe, Jan 20 2014
Carmichael's theorem implies that 8 and 144 are the only terms of this sequence.
First two terms of A061899, A111687, A172150, A212703, and A231851. - Omar E. Pol, Jan 21 2014
Saha and Karthik conjectured (without reference to Carmichael's theorem) that the only positive integers k for which A001175(k^2) = A001175(k) are 6 and 12. (A000045(6) = 8 and A000045(12) = 144.) - L. Edson Jeffery, Feb 13 2014
Y. Bugeaud, M. Mignotte, and S. Siksek proved that 8 and 144 are the only nontrivial perfect power Fibonacci numbers. - Robert C. Lyons, Dec 23 2015

Examples

			The Fibonacci number 8 is in the sequence because 8=2*2*2, and 2 is a Fibonacci number that is not equal to 8. The Fibonacci number 144 is in the sequence because 144=3*3*2*2*2*2, and both 2 and 3 are Fibonacci numbers that are not equal to 144.
		

Crossrefs

A235479 Primes whose base-2 representation also is the base-9 representation of a prime.

Original entry on oeis.org

11, 13, 19, 41, 79, 109, 137, 151, 167, 191, 193, 199, 227, 239, 271, 307, 313, 421, 431, 433, 457, 487, 491, 521, 563, 613, 617, 659, 677, 709, 727, 757, 929, 947, 1009, 1033, 1051, 1249, 1483, 1693, 1697, 1709, 1721, 1831, 1951, 1979, 1987, 1993
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
A subsequence of A027697, A050150, A062090 and A176620.

Examples

			11 = 1011_2 and 1011_9 = 6571 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235466A077723, A235266, A152079, A235475 - A235478, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • PARI
    is(p,b=9)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)

A267490 Primes whose base-8 representation is a perfect square in base 10.

Original entry on oeis.org

149, 241, 661, 1409, 2593, 3733, 6257, 7793, 15313, 23189, 25601, 26113, 30497, 34337, 44053, 49057, 78577, 92821, 95009, 108529, 115861, 132757, 162257, 178417, 183377, 223381, 235541, 242197, 266261, 327317, 345749, 426389, 525461, 693397, 719893, 729713, 805397, 814081, 903841
Offset: 1

Views

Author

Christopher Cormier, Jan 16 2016

Keywords

Comments

Subsequence of primes in A267768. - M. F. Hasler, Jan 20 2016

Examples

			a(1) = 149 because 149 is 225 in base 8, and 225 is 15^2 in base 10.
		

Crossrefs

For primes which are primes in other bases, see A235265, A235266, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924.

Programs

  • Magma
    [n:n in PrimesUpTo(1000000)| IsSquare(Seqint(Intseq(n,8)))]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[Prime@ Range[10^5], IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 8] &] (* Michael De Vlieger, Jan 16 2016 *)
  • PARI
    listp(nn) = {forprime(p=1, nn, d = digits(p, 8); pd = Pol(d); if (issquare(subst(pd, x, 10)), print1(p, ", ")););} \\ Michel Marcus, Jan 16 2016
    
  • PARI
    is(n,b=8,c=10)={issquare(subst(Pol(digits(n,b)),x,c))&&isprime(n)} \\ M. F. Hasler, Jan 20 2016
    
  • Python
    from sympy import isprime
    A267490_list = [int(s,8) for s in (str(i**2) for i in range(10**6)) if max(s) < '8' and isprime(int(s,8))] # Chai Wah Wu, Jan 20 2016
    

A065726 Primes p whose base-8 expansion is also the decimal expansion of a prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 31, 43, 59, 67, 71, 89, 137, 151, 179, 191, 199, 223, 251, 257, 281, 283, 307, 311, 337, 353, 359, 367, 383, 409, 419, 433, 443, 449, 523, 563, 617, 619, 641, 659, 727, 787, 809, 811, 857, 887, 907, 919, 947, 977, 1033, 1039, 1097, 1123
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2001

Keywords

Comments

In general rebase notation (Marc LeBrun): p8 = (8) [p] (10).

Examples

			E.g., 787_10 = 1423_8 is prime, and so is 1423_10.
		

Crossrefs

Primes in A036963.
Cf. A065720 up to A065727, A065361.
Cf. A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[ Range[2500], PrimeQ[ # ] && PrimeQ[ FromDigits[ IntegerDigits[ #, 8]]] & ]
  • PARI
    is(p, b=10, c=8)=isprime(vector(#d=digits(p, c), i, b^(#d-i))*d~)&&isprime(p) \\ This code can be used for other bases b, c when b>c. See A235265 for code also valid for bM. F. Hasler, Jan 12 2014

Extensions

Definition clarified by M. F. Hasler, Jan 12 2014

A235474 Primes whose base-4 representation is also the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 11, 29, 31, 41, 101, 109, 139, 149, 151, 181, 199, 229, 239, 251, 269, 271, 281, 389, 409, 491, 509, 541, 547, 661, 751, 887, 911, 947, 991, 1021, 1051, 1061, 1069, 1091, 1151, 1279, 1289, 1381, 1409, 1471, 1549, 1709, 1759, 1801, 1999
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.

Examples

			11 = 23_4 and 23_5 = 13 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235266, A235473, A152079, A235475 - A235479, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[FromDigits[IntegerDigits[#,4],5]]&] (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    is(p,b=5,c=4)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A235477 Primes whose base-2 representation also is the base-7 representation of a prime.

Original entry on oeis.org

2, 31, 47, 59, 103, 107, 173, 179, 181, 199, 211, 227, 229, 233, 367, 409, 443, 463, 487, 701, 743, 757, 823, 827, 877, 911, 919, 967, 1009, 1123, 1163, 1291, 1321, 1367, 1373, 1447, 1493, 1571, 1583, 1597, 1609, 1627, 1657, 1669, 1721, 1831, 1933, 1987
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
A subsequence of A027697, A015919, A197636 (conjectural).

Examples

			31 = 11111_2 and 11111_7 = 2801 are both prime, so 31 is a term.
		

Crossrefs

Cf. A235464A077721, A235475, A152079, A235266, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[FromDigits[IntegerDigits[#,2],7]]&] (* Harvey P. Dale, May 08 2021 *)
  • PARI
    is(p,b=7)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)

A235635 Primes whose base-5 representation is also the base-7 representation of a prime.

Original entry on oeis.org

2, 3, 5, 13, 17, 23, 29, 41, 43, 47, 53, 59, 61, 71, 79, 83, 101, 103, 137, 157, 163, 181, 191, 223, 227, 239, 281, 347, 379, 383, 419, 443, 463, 479, 547, 563, 571, 593, 641, 691, 701, 743, 757, 811, 839, 863, 877, 967, 997, 1049, 1051, 1087, 1097, 1109, 1151, 1171, 1217, 1249, 1259, 1283
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			17 = 32_5 and 32_7 = 23 are both prime, so 17 is a term.
		

Crossrefs

Cf. A235627, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ@FromDigits[IntegerDigits[#, 5], 7] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=7,c=5)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A231474 Primes whose base-3 representation is also the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 29, 31, 37, 41, 59, 67, 79, 97, 101, 109, 113, 137, 139, 149, 151, 173, 181, 193, 223, 229, 251, 269, 271, 293, 311, 331, 353, 367, 373, 379, 383, 389, 397, 401, 457, 467, 491, 503, 617, 631, 641, 647, 653, 673, 701, 773, 787, 797, 809, 829, 853, 857, 911, 929, 953, 977
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			7 = 21_3 and 21_5 = 11 are both prime, so 7 is a term.
		

Crossrefs

Cf. A235265, A235266, A235473, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@ Range@ 500, PrimeQ@ FromDigits[ IntegerDigits[#, 3], 5] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=5,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A231477 Primes whose base-3 representation is also the base-7 representation of a prime.

Original entry on oeis.org

2, 3, 23, 41, 47, 53, 61, 67, 71, 89, 113, 127, 131, 137, 191, 193, 223, 251, 269, 283, 293, 311, 353, 397, 409, 421, 443, 463, 491, 503, 509, 541, 569, 601, 613, 701, 773, 787, 983, 1013, 1031, 1091, 1117, 1213, 1223, 1429, 1499, 1543, 1549, 1579, 1619, 1621, 1697, 1699, 1733, 1873, 1933, 1949, 1951, 1973
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			23 = 212_3 and 212_7 = 107 are both prime, so 23 is a term.
		

Crossrefs

Cf. A235470, A235265, A235266, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ@FromDigits[IntegerDigits[#, 3], 7] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=7,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A235478 Primes whose base-2 representation also is the base-8 representation of a prime.

Original entry on oeis.org

7, 11, 13, 29, 37, 43, 47, 53, 61, 67, 71, 73, 107, 139, 149, 199, 211, 227, 263, 293, 307, 311, 317, 331, 347, 383, 389, 421, 461, 467, 541, 593, 601, 619, 641, 643, 739, 811, 863, 907, 937, 1061, 1069, 1093, 1117, 1163, 1223, 1283, 1301, 1319, 1321, 1409, 1433, 1439, 1489, 1499, 1523, 1559, 1619, 1697, 1811, 1861, 1879
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
Appears to be a subsequence of A050150, A062090 and A216285.

Examples

			11 = 1011_2 and 1011_8 = 521 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235465A077722, A235266, A152079, A235475 - A235479, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[FromDigits[IntegerDigits[#,2],8]]&] (* Harvey P. Dale, Sep 25 2015 *)
  • PARI
    is(p,b=8)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)
Previous Showing 11-20 of 65 results. Next