A007587
12-gonal (or dodecagonal) pyramidal numbers: a(n) = n*(n+1)*(10*n-7)/6.
Original entry on oeis.org
0, 1, 13, 46, 110, 215, 371, 588, 876, 1245, 1705, 2266, 2938, 3731, 4655, 5720, 6936, 8313, 9861, 11590, 13510, 15631, 17963, 20516, 23300, 26325, 29601, 33138, 36946, 41035, 45415, 50096, 55088, 60401, 66045, 72030, 78366, 85063, 92131, 99580, 107420, 115661
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
See similar sequences listed in
A237616.
-
List([0..45], n-> n*(n+1)*(10*n-7)/6); # G. C. Greubel, Aug 30 2019
-
[ n eq 1 select 0 else Self(n-1)+(n-1)*(5*n-9): n in [1..45] ]; // Klaus Brockhaus, Nov 20 2008
-
A007587:=n->n*(n+1)*(10*n-7)/6: seq(A007587(n), n=0..50); # Wesley Ivan Hurt, Oct 23 2014
-
CoefficientList[Series[x(1+9x)/(1-x)^4, {x,0,45}], x] (* Vincenzo Librandi, Jun 20 2013 *)
Table[n(n+1)(10n-7)/6,{n,0,50}] (* Harvey P. Dale, Nov 13 2013 *)
-
a(n)=if(n,([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,4,-6,4]^n*[0;1;13;46])[1,1],0) \\ Charles R Greathouse IV, Oct 07 2015
-
vector(45, n, n*(n-1)*(10*n-17)/6) \\ G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(10*n-7)/6 for n in (0..45)] # G. C. Greubel, Aug 30 2019
A172073
a(n) = (4*n^3 + n^2 - 3*n)/2.
Original entry on oeis.org
0, 1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, 3510, 4459, 5565, 6840, 8296, 9945, 11799, 13870, 16170, 18711, 21505, 24564, 27900, 31525, 35451, 39690, 44254, 49155, 54405, 60016, 66000, 72369, 79135, 86310, 93906, 101935, 110409, 119340, 128740
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014
Cf. similar sequences listed in
A237616.
-
List([0..40], n-> n*(n+1)*(4*n-3)/2); # G. C. Greubel, Aug 30 2019
-
[(4*n^3+n^2-3*n)/2: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
-
seq(n*(n+1)*(4*n-3)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
f[n_]:= n(n+1)(4n-3)/2; Array[f, 40, 0]
LinearRecurrence[{4,-6,4,-1},{0,1,15,54},40] (* Harvey P. Dale, Jan 29 2013 *)
CoefficientList[Series[x (1+11x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
-
a(n)=(4*n^3+n^2-3*n)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
[n*(n+1)*(4*n-3)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A172078
a(n) = n*(16*n^2 + 3*n - 13)/6.
Original entry on oeis.org
0, 1, 19, 70, 170, 335, 581, 924, 1380, 1965, 2695, 3586, 4654, 5915, 7385, 9080, 11016, 13209, 15675, 18430, 21490, 24871, 28589, 32660, 37100, 41925, 47151, 52794, 58870, 65395, 72385, 79856, 87824, 96305, 105315, 114870, 124986, 135679
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014
Cf. similar sequences listed in
A237616.
-
List([0..40], n-> n*(n+1)*(16*n-13)/6); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(16*n-13)/6: n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
A172078:=n->(16*n^3+3*n^2-13*n)/6: seq(A172078(n), n=0..50); # Wesley Ivan Hurt, Jan 21 2017
-
LinearRecurrence[{4,-6,4,-1}, {0,1,19,70}, 50] (* Vincenzo Librandi, Mar 01 2012 *)
Table[n (16n^2+3n-13)/6,{n,0,40}] (* Harvey P. Dale, Aug 14 2023 *)
-
a(n)=n*(16*n^2+3*n-13)/6 \\ Charles R Greathouse IV, Oct 07 2015
-
[n*(n+1)*(16*n-13)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
Original entry on oeis.org
0, 1, 14, 50, 120, 235, 406, 644, 960, 1365, 1870, 2486, 3224, 4095, 5110, 6280, 7616, 9129, 10830, 12730, 14840, 17171, 19734, 22540, 25600, 28925, 32526, 36414, 40600, 45095, 49910, 55056, 60544, 66385, 72590, 79170, 86136, 93499, 101270
Offset: 0
After 0, the sequence is provided by the row sums of the triangle (see above, fourth formula):
1;
2, 12;
3, 24, 23;
4, 36, 46, 34;
5, 48, 69, 68, 45; ... - _Vincenzo Librandi_, Feb 12 2014
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189-196.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
Similar sequences are listed in
A237616.
-
List([0..40], n-> n*(n+1)*(11*n-8)/6); # G. C. Greubel, Aug 30 2019
-
I:=[0,1,14,50]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(11*n-8)/6, n=0..40); # G. C. Greubel, Aug 30 2019
-
Accumulate[Table[n (11n-9)/2,{n,0,40}]] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,1,14,50},40] (* Harvey P. Dale, Nov 14 2011 *)
CoefficientList[Series[x (1 + 10 x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
-
a(n)=n*(n+1)*(11*n-8)/6 \\ Charles R Greathouse IV, Oct 07 2015
-
[n*(n+1)*(11*n-8)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A172076
a(n) = n*(n+1)*(14*n-11)/6.
Original entry on oeis.org
0, 1, 17, 62, 150, 295, 511, 812, 1212, 1725, 2365, 3146, 4082, 5187, 6475, 7960, 9656, 11577, 13737, 16150, 18830, 21791, 25047, 28612, 32500, 36725, 41301, 46242, 51562, 57275, 63395, 69936, 76912, 84337, 92225, 100590, 109446, 118807, 128687
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. [From Bruno Berselli, Feb 13 2014]
Cf. similar sequences listed in
A237616.
-
List([0..40], n-> n*(n+1)*(14*n-11)/6); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(14*n-11)/6: n in [0..40]] // G. C. Greubel, Aug 30 2019
-
A172076:=n->n*(n+1)*(14*n-11)/6; seq(A172076(n), n=0..50); # Wesley Ivan Hurt, Feb 26 2014
-
LinearRecurrence[{4,-6,4,-1}, {0, 1, 17, 62}, 50] (* Vincenzo Librandi, Mar 01 2012 *)
-
vector(40, n, n*(n-1)*(14*n-25)/6) \\ G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(14*n-11)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A172082
a(n) = n*(n+1)*(6*n-5)/2.
Original entry on oeis.org
0, 1, 21, 78, 190, 375, 651, 1036, 1548, 2205, 3025, 4026, 5226, 6643, 8295, 10200, 12376, 14841, 17613, 20710, 24150, 27951, 32131, 36708, 41700, 47125, 53001, 59346, 66178, 73515, 81375, 89776, 98736, 108273, 118405, 129150, 140526
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014
Cf. similar sequences listed in
A237616.
-
List([0..40], n-> n*(n+1)*(6*n-5)/2); # G. C. Greubel, Aug 30 2019
-
[(18*n^3+3*n^2-15*n)/6: n in [0..40]]; // Vincenzo Librandi, Jan 02 2014
-
seq(n*(n+1)*(6*n-5)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[(18n^3+3n^2-15n)/6,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,21,78}, 40] (* Harvey P. Dale, Jun 29 2011 *)
CoefficientList[Series[x*(1+17*x)/(1-x)^4, {x,0,40}], x] (* Vincenzo Librandi, Jan 02 2014 *)
-
vector(40, n, n*(n-1)*(6*n-11)/2) \\ G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(6*n-5)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A172117
a(n) = n*(n+1)*(20*n-17)/6.
Original entry on oeis.org
0, 1, 23, 86, 210, 415, 721, 1148, 1716, 2445, 3355, 4466, 5798, 7371, 9205, 11320, 13736, 16473, 19551, 22990, 26810, 31031, 35673, 40756, 46300, 52325, 58851, 65898, 73486, 81635, 90365, 99696, 109648, 120241, 131495, 143430, 156066
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. [Bruno Berselli, Feb 13 2014]
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(20*n-17)/6: n in [0..50]]; // Vincenzo Librandi, Aug 01 2015
-
Table[(20n^3+3n^2-17n)/6,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,1,23,86},40] (* Harvey P. Dale, May 15 2011 *)
-
a(n)=n*(20*n^2+3*n-17)/6 \\ Charles R Greathouse IV, Jan 11 2012
-
[sum( (-1)^j*(20-j)*binomial(n+2-j, 3-j) for j in (0..1)) for n in (0..50)] # G. C. Greubel, Apr 15 2022
A256716
a(n) = n*(n+1)*(22*n-19)/6.
Original entry on oeis.org
0, 1, 25, 94, 230, 455, 791, 1260, 1884, 2685, 3685, 4906, 6370, 8099, 10115, 12440, 15096, 18105, 21489, 25270, 29470, 34111, 39215, 44804, 50900, 57525, 64701, 72450, 80794, 89755, 99355, 109616, 120560, 132209, 144585, 157710, 171606, 186295, 201799, 218140
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (22nd row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(22*n-19)/6: n in [0..40]];
-
Table[n (n + 1) (22 n - 19)/6, {n, 0, 40}]
-
vector(40, n, n--; n*(n+1)*(22*n-19)/6)
-
[n*(n+1)*(22*n-19)/6 for n in (0..40)]
A177890
15-gonal (or pentadecagonal) pyramidal numbers: a(n) = n*(n+1)*(13*n-10)/6.
Original entry on oeis.org
0, 1, 16, 58, 140, 275, 476, 756, 1128, 1605, 2200, 2926, 3796, 4823, 6020, 7400, 8976, 10761, 12768, 15010, 17500, 20251, 23276, 26588, 30200, 34125, 38376, 42966, 47908, 53215, 58900, 64976, 71456, 78353, 85680, 93450, 101676, 110371, 119548, 129220
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (thirteenth row of the table).
Cf. similar sequences listed in
A237616.
-
List([0..40], n-> n*(n+1)*(13*n-10)/6); # G. C. Greubel, Aug 30 2019
-
I:=[0,1,16,58]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2) +4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
-
[n*(n+1)*(13*n-10)/6: n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
seq(n*(n+1)*(13*n-10)/6, n=0..40); # G. C. Greubel, Aug 30 2019
-
CoefficientList[Series[x*(1+12*x)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 04 2012 *)
Table[n*(n-1)*(13*n-23)/6, {n,40}] (* G. C. Greubel, Aug 30 2019 *)
LinearRecurrence[{4,-6,4,-1},{0,1,16,58},40] (* Harvey P. Dale, Dec 21 2022 *)
-
vector(40, n, n*(n-1)*(13*n-23)/6) \\ G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(13*n-10)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A237617
a(n) = n*(n + 1)*(17*n - 14)/6.
Original entry on oeis.org
0, 1, 20, 74, 180, 355, 616, 980, 1464, 2085, 2860, 3806, 4940, 6279, 7840, 9640, 11696, 14025, 16644, 19570, 22820, 26411, 30360, 34684, 39400, 44525, 50076, 56070, 62524, 69455, 76880, 84816, 93280, 102289, 111860, 122010, 132756, 144115, 156104, 168740
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 18;
3, 36, 35;
4, 54, 70, 52;
5, 72, 105, 104, 69;
6, 90, 140, 156, 138, 86;
7, 108, 175, 208, 207, 172, 103;
8, 126, 210, 260, 276, 258, 206, 120;
9, 144, 245, 312, 345, 344, 309, 240, 137;
10, 162, 280, 364, 414, 430, 412, 360, 274, 154; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 17*r - 16 and T(r,c) = T(r-1,c) + T(r,r) = (r-c+1) * T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (seventeenth row of the table).
Cf. similar sequences listed in
A237616.
-
List([0..40], n-> n*(n+1)*(17*n-14)/6); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(17*n-14)/6: n in [0..40]];
-
I:=[0,1,20,74]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2) +4*Self(n-3)-Self(n-4) : n in [1..40]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(17*n-14)/6, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(17*n-14)/6, {n, 0, 40}]
CoefficientList[Series[x(1+16x)/(1-x)^4, {x,0,40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,20,74},40] (* Harvey P. Dale, Aug 04 2021 *)
-
vector(40, n, n*(n-1)*(17*n-31)/6) \\ G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(17*n-14)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
Comments