cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A325354 Number of reversed integer partitions of n whose k-th differences are weakly increasing for all k.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 11, 15, 19, 24, 25, 36, 37, 43, 54, 63, 64, 80, 81, 100, 113, 122, 123, 151, 166, 178, 195, 217, 218, 269, 270, 295, 316, 332, 372, 424, 425, 447, 472, 547, 550, 616, 617, 659, 750, 777, 782, 862, 885, 995, 1032, 1083, 1090, 1176, 1275
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325400.

Examples

			The a(1) = 1 through a(8) = 15 reversed partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (111)  (22)    (23)     (24)      (25)       (26)
                    (112)   (113)    (33)      (34)       (35)
                    (1111)  (1112)   (114)     (115)      (44)
                            (11111)  (123)     (124)      (116)
                                     (222)     (223)      (125)
                                     (1113)    (1114)     (224)
                                     (11112)   (11113)    (1115)
                                     (111111)  (111112)   (1124)
                                               (1111111)  (2222)
                                                          (11114)
                                                          (111113)
                                                          (1111112)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Sort/@IntegerPartitions[n],And@@Table[OrderedQ[Differences[#,k]],{k,0,Length[#]}]&]],{n,0,30}]

A325358 Number of integer partitions of n whose augmented differences are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 7, 9, 10, 11, 13, 14, 15, 18, 20, 21, 24, 26, 28, 33, 36, 38, 43, 46, 49, 56, 60, 63, 71, 76, 80, 90, 96, 100, 112, 120, 125, 139, 149, 155, 171, 183, 190, 208, 223, 232, 252, 269, 280, 304, 325, 338, 364, 387, 403
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325396.

Examples

			The a(1) = 1 through a(11) = 6 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (10)   (11)
            (21)  (31)  (41)  (42)  (52)   (62)   (63)   (73)   (83)
                              (51)  (61)   (71)   (72)   (82)   (92)
                                    (421)  (521)  (81)   (91)   (101)
                                                  (621)  (631)  (731)
                                                         (721)  (821)
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A325391 Number of reversed integer partitions of n whose k-th differences are strictly increasing for all k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 8, 9, 9, 13, 13, 15, 19, 20, 20, 28, 28, 30, 36, 40, 40, 50, 50, 56, 64, 68, 68, 86, 86, 92, 102, 112, 114, 133, 133, 146, 158, 173, 173, 202, 202, 215, 237, 256, 256, 287, 287, 324, 340, 359, 359, 403, 423, 446, 464, 495, 495
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325398.

Examples

			The a(1) = 1 through a(9) = 6 reversed partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
            (12)  (13)  (14)  (15)  (16)   (17)   (18)
                        (23)  (24)  (25)   (26)   (27)
                                    (34)   (35)   (36)
                                    (124)  (125)  (45)
                                                  (126)
The smallest reversed strict partition with strictly increasing differences not counted by this sequence is (1,2,4,7), whose first and second differences are (1,2,3) and (1,1) respectively.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],And@@Table[Less@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]

A325400 Heinz numbers of reversed integer partitions whose k-th differences are weakly increasing for all k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

First differs from A109427 in lacking 54.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The enumeration of these partitions by sum is given by A325354.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
   18: {1,2,2}
   36: {1,1,2,2}
   50: {1,3,3}
   54: {1,2,2,2}
   60: {1,1,2,3}
   70: {1,3,4}
   72: {1,1,1,2,2}
   75: {2,3,3}
   90: {1,2,2,3}
   98: {1,4,4}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  140: {1,1,3,4}
  144: {1,1,1,1,2,2}
  147: {2,4,4}
  150: {1,2,3,3}
  154: {1,4,5}
  162: {1,2,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],And@@Table[Greater@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]

A325350 Number of integer partitions of n whose augmented differences are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 17, 21, 26, 32, 38, 46, 56, 66, 78, 92, 106, 124, 145, 166, 191, 220, 249, 284, 325, 366, 413, 468, 523, 586, 659, 733, 817, 913, 1011, 1121, 1245, 1373, 1515, 1674, 1838, 2020, 2223, 2433, 2664, 2920, 3184, 3476, 3797, 4129, 4492
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325389.

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (31)    (32)     (42)      (52)       (53)
             (111)  (211)   (41)     (51)      (61)       (62)
                    (1111)  (311)    (321)     (421)      (71)
                            (2111)   (411)     (511)      (521)
                            (11111)  (3111)    (3211)     (611)
                                     (21111)   (4111)     (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
For example, (4,2,1,1) has augmented differences (3,2,1,1), which are weakly decreasing, so (4,2,1,1) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

Formula

G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(j*(j+1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 25 2019

A325456 Heinz numbers of integer partitions with strictly increasing differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A240027.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Differences[primeptn[#]]&]

A320510 Number of partitions of n such that the successive differences of consecutive parts are decreasing, and first difference < first part.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 3, 4, 3, 4, 6, 3, 5, 6, 5, 6, 9, 5, 7, 9, 8, 8, 11, 8, 11, 13, 10, 12, 15, 11, 15, 16, 14, 16, 21, 15, 20, 22, 18, 21, 26, 21, 24, 28, 25, 28, 33, 26, 32, 34, 33, 36, 40, 34, 40, 45, 40, 43, 49, 43, 52, 54, 49, 54, 62, 56, 62, 64, 61, 67, 75, 66
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check visually if written in ascending order.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1). Then a(n) is the number of integer partitions of n whose differences (with the last part taken to be 0) are strictly decreasing. The Heinz numbers of these partitions are given by A325461. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly decreasing, which is the author's interpretation. - Gus Wiseman, May 04 2019

Examples

			There are a(29) = 13 such partitions of 29:
01: [29]
02: [10, 19]
03: [11, 18]
04: [12, 17]
05: [13, 16]
06: [14, 15]
07: [6, 10, 13]
08: [6, 11, 12]
09: [7, 10, 12]
10: [7, 11, 11]
11: [8, 10, 11]
12: [9, 10, 10]
13: [4, 7, 9, 9]
There are a(30) = 10 such partitions of 30:
01: [30]
02: [11, 19]
03: [12, 18]
04: [13, 17]
05: [14, 16]
06: [15, 15]
07: [6, 11, 13]
08: [7, 11, 12]
09: [8, 11, 11]
10: [4, 7, 9, 10]
		

Crossrefs

Cf. A320385 (distinct parts, decreasing, and first difference < first part).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Greater@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0
      }
      cnt
    end
    def A320510(n)
      (0..n).map{|i| f(i)}
    end
    p A320510(50)

A049992 a(n) is the number of arithmetic progressions of 3 or more positive integers, nondecreasing with sum n.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 1, 2, 4, 3, 1, 7, 1, 3, 8, 4, 1, 10, 1, 6, 10, 4, 1, 14, 4, 4, 12, 7, 1, 19, 1, 6, 14, 5, 7, 22, 1, 5, 16, 12, 1, 24, 1, 8, 25, 6, 1, 27, 4, 12, 21, 9, 1, 29, 9, 12, 23, 7, 1, 40, 1, 7, 30, 11, 10, 35, 1, 10, 27, 21, 1, 42, 1, 8, 39, 11, 7, 40, 1, 22, 35, 9, 1, 49, 12, 9, 34
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k>=3} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988] - Petros Hadjicostas, Sep 29 2019
a(n) = A014405(n) + A023645(n) = A049994(n) + A175676(n). [Two of the formulas listed by Sequence Machine, both obviously true] - Antti Karttunen, Feb 20 2023

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A342523 Heinz numbers of integer partitions with weakly increasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 76
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

Also called log-concave-up partitions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 60 are {1,1,2,3}, with first quotients (1,2,3/2), so 60 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
   18: {1,2,2}
   30: {1,2,3}
   36: {1,1,2,2}
   50: {1,3,3}
   54: {1,2,2,2}
   60: {1,1,2,3}
   70: {1,3,4}
   72: {1,1,1,2,2}
   75: {2,3,3}
   90: {1,2,2,3}
   98: {1,4,4}
  100: {1,1,3,3}
		

Crossrefs

The version counting strict divisor chains is A057567.
For multiplicities (prime signature) instead of quotients we have A304678.
For differences instead of quotients we have A325360 (count: A240026).
These partitions are counted by A342523 (strict: A342516, ordered: A342492).
The strictly increasing version is A342524.
The weakly decreasing version is A342526.
A000041 counts partitions (strict: A000009).
A000929 counts partitions with adjacent parts x >= 2y.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342086 counts strict chains of divisors with strictly increasing quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],LessEqual@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A342497 Number of integer partitions of n with weakly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 25, 32, 36, 43, 49, 60, 65, 75, 83, 96, 106, 121, 131, 150, 163, 178, 194, 217, 230, 254, 275, 300, 320, 350, 374, 411, 439, 470, 503, 548, 578, 625, 666, 710, 758, 815, 855, 913, 970, 1029, 1085, 1157, 1212, 1288, 1360
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also called log-concave-up partitions.
Also the number of reversed integer partitions of n with weakly increasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition y = (6,3,2,1,1) has first quotients (1/2,2/3,1/2,1) so is not counted under a(13). However, the first differences (-3,-1,-1,0) are weakly increasing, so y is counted under A240026(13).
The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (311)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (411)     (421)      (422)
                                     (3111)    (511)      (521)
                                     (21111)   (4111)     (611)
                                     (111111)  (31111)    (2222)
                                               (211111)   (4211)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The version for differences instead of quotients is A240026.
The ordered version is A342492.
The strictly increasing version is A342498.
The weakly decreasing version is A342513.
The strict case is A342516.
The Heinz numbers of these partitions are A342523.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
Previous Showing 21-30 of 33 results. Next