cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A071109 Expansion of Product_{k>=1} 1/(1+2*x^k).

Original entry on oeis.org

1, -2, 2, -6, 14, -26, 50, -102, 214, -426, 834, -1678, 3398, -6778, 13482, -27022, 54198, -108306, 216346, -432878, 866334, -1732386, 3463626, -6927926, 13858350, -27715378, 55426002, -110855030, 221719582, -443433610, 886848930, -1773709078, 3547455846
Offset: 0

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 27 2002

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 + 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (O[x]^30 + 3/QPochhammer[-2, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

a(n) ~ c * (-2)^n, where c = Product_{j>=1} 1/(1-1/(-2)^j) = 1/QPochhammer[-1/2,-1/2] = 0.8259519860658427384636116224100201356301... . - Vaclav Kotesovec, Aug 25 2015
G.f.: Sum_{i>=0} (-2)^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 13 2018

Extensions

More terms from Vaclav Kotesovec, Aug 25 2015

A255970 Number T(n,k) of partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 8, 6, 0, 5, 24, 42, 24, 0, 7, 60, 198, 264, 120, 0, 11, 144, 780, 1848, 1920, 720, 0, 15, 320, 2778, 10512, 18840, 15840, 5040, 0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320, 0, 30, 1486, 30186, 250128, 999720, 2129040, 2479680, 1491840, 362880
Offset: 0

Views

Author

Alois P. Heinz, Mar 12 2015

Keywords

Examples

			T(3,1) = 3: 1a1a1a, 2a1a, 1a.
T(3,2) = 8: 1a1a1b, 1a1b1a, 1b1a1a, 1b1b1a, 1b1a1b, 1a1b1b, 2a1b, 2b1a.
T(3,3) = 6: 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,   2;
  0,  3,   8,    6;
  0,  5,  24,   42,    24;
  0,  7,  60,  198,   264,    120;
  0, 11, 144,  780,  1848,   1920,    720;
  0, 15, 320, 2778, 10512,  18840,  15840,   5040;
  0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000041 (for n>0).
Main diagonal gives A000142.
Row sums give A278644.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k -i]*(-1)^i* Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A246935(n,k-i).
T(n,k) = k! * A256130(n,k).

A261561 Expansion of Product_{k>=1} (1/(1 - 2*x^k))^k.

Original entry on oeis.org

1, 2, 8, 22, 64, 162, 424, 1022, 2480, 5770, 13336, 30046, 67184, 147554, 321592, 692278, 1479568, 3133474, 6596008, 13788606, 28679264, 59335530, 122256456, 250875550, 513116864, 1046190786, 2127557592, 4316282006, 8739096992, 17661731138, 35639764536
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;  `if`(n=0, 1, `if`(i<1, 0,
          add(2^j*binomial(i+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 21 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1,n,x^m/m * sumdiv(m,d,2^d*m^2/d^2) ) +x*O(x^n)),n)}
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 2^n, where c = Product_{j>=1} 1/(1 - 1/2^j)^(j+1) = 34.7387234654851595844514193757064296508992247003230539635669599773458896...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 2^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A261565 Expansion of Product_{k>=1} (1/(1 - 3*x^k))^k.

Original entry on oeis.org

1, 3, 15, 54, 201, 672, 2268, 7266, 23208, 72414, 224652, 688929, 2103975, 6386907, 19337091, 58367817, 175905741, 529331190, 1591515297, 4781575074, 14359673454, 43108645230, 129387584991, 388283978589, 1165099808574, 3495782937135, 10488322595625
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Comments

In general, for z > 1 or z < -1, if g.f. = Product_{k>=1} (1/(1 - z*x^k))^k, then a(n) ~ c * z^n, where c = Product_{j>=1} 1/(1 - 1/z^j)^(j+1).

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1/(1 - 3*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[3^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, 3^d * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 3^n, where c = Product_{j>=1} 1/(1 - 1/3^j)^(j+1) = 4.1269357592430271005054028580646705856298720432004233223482475759761040273...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 3^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A246937 Number of partitions of n into 5 sorts of parts.

Original entry on oeis.org

1, 5, 30, 155, 805, 4055, 20455, 102455, 513230, 2567230, 12841130, 64211380, 321082905, 1605444405, 8027354055, 40136925680, 200685295955, 1003427268205, 5017139711105, 25085702537730, 125428529603755, 627142668099880, 3135713425289030, 15678567227192655
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2014

Keywords

Crossrefs

Column k=5 of A246935.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 5*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    (O[x]^20 - 4/QPochhammer[5, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, 5 b[n-i, i]]]];
    a[n_] := b[n, n];
    a /@ Range[0, 25] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)

Formula

G.f.: Product_{i>=1} 1/(1-5*x^i).
a(n) ~ c * 5^n, where c = Product_{k>=1} 1/(1-1/5^k) = 1.3152135557353452193080... . - Vaclav Kotesovec, Mar 19 2015
G.f.: Sum_{i>=0} 5^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018

A265974 Expansion of Product_{k>=1} 1/(1 - 3*k*x^k).

Original entry on oeis.org

1, 3, 15, 54, 210, 699, 2484, 7995, 26610, 84186, 269940, 839238, 2634579, 8098194, 25032282, 76388265, 233791104, 709501596, 2157488730, 6523204836, 19747491810, 59558682132, 179762506329, 541222906812, 1630300772106, 4902697929306, 14748249476553
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          3^n, b(n, i-1) +i*3*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-3*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where c = Product_{m>=2} 1/(1 - m/3^(m-1)) = 5.86277744540963226378877460838259757442241952947887939654316926419876...

A265975 Expansion of Product_{k>=1} 1/(1 - 4*k*x^k).

Original entry on oeis.org

1, 4, 24, 108, 512, 2164, 9464, 39004, 163008, 663588, 2713752, 10954764, 44328512, 178160724, 716821752, 2874497660, 11532111232, 46187508676, 185028540696, 740595436652, 2964628293504, 11862432443764, 47467812675320, 189902835709212, 759756868215872
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          4^n, b(n, i-1) +i*4*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-4*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = Product_{m>=2} 1/(1 - m/4^(m-1)) = 2.700170514502619666262858845683166558216386190684736249639219328278569...

A265976 Expansion of Product_{k>=1} 1/(1 - 5*k*x^k).

Original entry on oeis.org

1, 5, 35, 190, 1070, 5525, 29080, 147485, 752790, 3789170, 19105800, 95794930, 480650335, 2406018490, 12047084370, 60264282575, 301493182380, 1507758356660, 7540528037090, 37705593514220, 188545393000350, 942756783659980, 4713958620697385, 23570092258449540
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          5^n, b(n, i-1) +i*5*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-5*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 5^n, where c = Product_{m>=2} 1/(1 - m/5^(m-1)) = 1.977268427518901757865749340705853730491796767544158844539130847296...

A246938 Number of partitions of n into 6 sorts of parts.

Original entry on oeis.org

1, 6, 42, 258, 1590, 9582, 57786, 347010, 2083902, 12505470, 75044202, 450278106, 2701739022, 16210513806, 97263509010, 583581545466, 3501491846046, 21008954050422, 126053739826530, 756322456907130, 4537934834757702, 27227609116759302, 163365655261094322
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2014

Keywords

Crossrefs

Column k=6 of A246935.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 6*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    (O[x]^20 - 5/QPochhammer[6, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

G.f.: Product_{i>=1} 1/(1-6*x^i).
a(n) ~ c * 6^n, where c = Product_{k>=1} 1/(1-1/6^k) = 1.2411756627857248707756... . - Vaclav Kotesovec, Mar 19 2015
G.f.: Sum_{i>=0} 6^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018

A246939 Number of partitions of n into 7 sorts of parts.

Original entry on oeis.org

1, 7, 56, 399, 2849, 19999, 140441, 983535, 6887986, 48219486, 337559586, 2362943030, 16540767131, 115785555389, 810500055939, 5673501716540, 39714520225149, 278001650902563, 1946011613977669, 13622081363362570, 95354569947550935, 667481990092883448
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2014

Keywords

Crossrefs

Column k=7 of A246935.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 7*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    (O[x]^20 - 6/QPochhammer[7, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

G.f.: Product_{i>=1} 1/(1-7*x^i).
a(n) ~ c * 7^n, where c = Product_{k>=1} 1/(1-1/7^k) = 1.1950352398308474540223... . - Vaclav Kotesovec, Mar 19 2015
G.f.: Sum_{i>=0} 7^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018
Previous Showing 11-20 of 26 results. Next