A071109
Expansion of Product_{k>=1} 1/(1+2*x^k).
Original entry on oeis.org
1, -2, 2, -6, 14, -26, 50, -102, 214, -426, 834, -1678, 3398, -6778, 13482, -27022, 54198, -108306, 216346, -432878, 866334, -1732386, 3463626, -6927926, 13858350, -27715378, 55426002, -110855030, 221719582, -443433610, 886848930, -1773709078, 3547455846
Offset: 0
Sharon Sela (sharonsela(AT)hotmail.com), May 27 2002
-
nmax = 40; CoefficientList[Series[Product[1/(1 + 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
(O[x]^30 + 3/QPochhammer[-2, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
A255970
Number T(n,k) of partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 8, 6, 0, 5, 24, 42, 24, 0, 7, 60, 198, 264, 120, 0, 11, 144, 780, 1848, 1920, 720, 0, 15, 320, 2778, 10512, 18840, 15840, 5040, 0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320, 0, 30, 1486, 30186, 250128, 999720, 2129040, 2479680, 1491840, 362880
Offset: 0
T(3,1) = 3: 1a1a1a, 2a1a, 1a.
T(3,2) = 8: 1a1a1b, 1a1b1a, 1b1a1a, 1b1b1a, 1b1a1b, 1a1b1b, 2a1b, 2b1a.
T(3,3) = 6: 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 2;
0, 3, 8, 6;
0, 5, 24, 42, 24;
0, 7, 60, 198, 264, 120;
0, 11, 144, 780, 1848, 1920, 720;
0, 15, 320, 2778, 10512, 18840, 15840, 5040;
0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320;
...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k -i]*(-1)^i* Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A261561
Expansion of Product_{k>=1} (1/(1 - 2*x^k))^k.
Original entry on oeis.org
1, 2, 8, 22, 64, 162, 424, 1022, 2480, 5770, 13336, 30046, 67184, 147554, 321592, 692278, 1479568, 3133474, 6596008, 13788606, 28679264, 59335530, 122256456, 250875550, 513116864, 1046190786, 2127557592, 4316282006, 8739096992, 17661731138, 35639764536
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(2^j*binomial(i+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Sep 21 2018
-
nmax = 50; CoefficientList[Series[Product[(1/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[Exp[Sum[2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
-
{a(n) = polcoeff( exp( sum(m=1,n,x^m/m * sumdiv(m,d,2^d*m^2/d^2) ) +x*O(x^n)),n)}
for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015
A261565
Expansion of Product_{k>=1} (1/(1 - 3*x^k))^k.
Original entry on oeis.org
1, 3, 15, 54, 201, 672, 2268, 7266, 23208, 72414, 224652, 688929, 2103975, 6386907, 19337091, 58367817, 175905741, 529331190, 1591515297, 4781575074, 14359673454, 43108645230, 129387584991, 388283978589, 1165099808574, 3495782937135, 10488322595625
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[(1/(1 - 3*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Exp[Sum[3^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
-
{a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, 3^d * m^2/d^2) ) +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015
A246937
Number of partitions of n into 5 sorts of parts.
Original entry on oeis.org
1, 5, 30, 155, 805, 4055, 20455, 102455, 513230, 2567230, 12841130, 64211380, 321082905, 1605444405, 8027354055, 40136925680, 200685295955, 1003427268205, 5017139711105, 25085702537730, 125428529603755, 627142668099880, 3135713425289030, 15678567227192655
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, 5*b(n-i, i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
-
(O[x]^20 - 4/QPochhammer[5, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, 5 b[n-i, i]]]];
a[n_] := b[n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
A265974
Expansion of Product_{k>=1} 1/(1 - 3*k*x^k).
Original entry on oeis.org
1, 3, 15, 54, 210, 699, 2484, 7995, 26610, 84186, 269940, 839238, 2634579, 8098194, 25032282, 76388265, 233791104, 709501596, 2157488730, 6523204836, 19747491810, 59558682132, 179762506329, 541222906812, 1630300772106, 4902697929306, 14748249476553
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1,
3^n, b(n, i-1) +i*3*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..32); # Alois P. Heinz, Aug 23 2019
-
nmax=40; CoefficientList[Series[Product[1/(1-3*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A265975
Expansion of Product_{k>=1} 1/(1 - 4*k*x^k).
Original entry on oeis.org
1, 4, 24, 108, 512, 2164, 9464, 39004, 163008, 663588, 2713752, 10954764, 44328512, 178160724, 716821752, 2874497660, 11532111232, 46187508676, 185028540696, 740595436652, 2964628293504, 11862432443764, 47467812675320, 189902835709212, 759756868215872
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1,
4^n, b(n, i-1) +i*4*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..32); # Alois P. Heinz, Aug 23 2019
-
nmax=40; CoefficientList[Series[Product[1/(1-4*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A265976
Expansion of Product_{k>=1} 1/(1 - 5*k*x^k).
Original entry on oeis.org
1, 5, 35, 190, 1070, 5525, 29080, 147485, 752790, 3789170, 19105800, 95794930, 480650335, 2406018490, 12047084370, 60264282575, 301493182380, 1507758356660, 7540528037090, 37705593514220, 188545393000350, 942756783659980, 4713958620697385, 23570092258449540
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1,
5^n, b(n, i-1) +i*5*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..32); # Alois P. Heinz, Aug 23 2019
-
nmax=40; CoefficientList[Series[Product[1/(1-5*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A246938
Number of partitions of n into 6 sorts of parts.
Original entry on oeis.org
1, 6, 42, 258, 1590, 9582, 57786, 347010, 2083902, 12505470, 75044202, 450278106, 2701739022, 16210513806, 97263509010, 583581545466, 3501491846046, 21008954050422, 126053739826530, 756322456907130, 4537934834757702, 27227609116759302, 163365655261094322
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, 6*b(n-i, i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
-
(O[x]^20 - 5/QPochhammer[6, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
A246939
Number of partitions of n into 7 sorts of parts.
Original entry on oeis.org
1, 7, 56, 399, 2849, 19999, 140441, 983535, 6887986, 48219486, 337559586, 2362943030, 16540767131, 115785555389, 810500055939, 5673501716540, 39714520225149, 278001650902563, 1946011613977669, 13622081363362570, 95354569947550935, 667481990092883448
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, 7*b(n-i, i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
-
(O[x]^20 - 6/QPochhammer[7, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
Comments