cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A005940 The Doudna sequence: write n-1 in binary; power of prime(k) in a(n) is # of 1's that are followed by k-1 0's.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 27, 16, 11, 14, 21, 20, 35, 30, 45, 24, 49, 50, 75, 36, 125, 54, 81, 32, 13, 22, 33, 28, 55, 42, 63, 40, 77, 70, 105, 60, 175, 90, 135, 48, 121, 98, 147, 100, 245, 150, 225, 72, 343, 250, 375, 108, 625, 162, 243, 64, 17, 26, 39
Offset: 1

Views

Author

Keywords

Comments

A permutation of the natural numbers. - Robert G. Wilson v, Feb 22 2005
Fixed points: A029747. - Reinhard Zumkeller, Aug 23 2006
The even bisection, when halved, gives the sequence back. - Antti Karttunen, Jun 28 2014
From Antti Karttunen, Dec 21 2014: (Start)
This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A003961 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 27 16
11 14 21 20 35 30 45 24 49 50 75 36 125 54 81 32
etc.
Sequence A163511 is obtained by scanning the same tree level by level, from right to left. Also in binary trees A253563 and A253565 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees.
A252737(n) gives the sum and A252738(n) the product of terms on row n (where 1 is on row 0, 2 on row 1, 3 and 4 on row 2, etc.). A252745(n) gives the number of nodes on level n whose left child is larger than the right child, A252750 the difference between left and right child for each node from node 2 onward.
(End)
-A008836(a(1+n)) gives the corresponding numerator for A323505(n). - Antti Karttunen, Jan 19 2019
(a(2n+1)-1)/2 [= A244154(n)-1, for n >= 0] is a permutation of the natural numbers. - George Beck and Antti Karttunen, Dec 08 2019
From Peter Munn, Oct 04 2020: (Start)
Each term has the same even part (equivalently, the same 2-adic valuation) as its index.
Using the tree depicted in Antti Karttunen's 2014 comment:
Numbers are on the right branch (4 and descendants) if and only if divisible by the square of their largest prime factor (cf. A070003).
Numbers on the left branch, together with 2, are listed in A102750.
(End)
According to Kutz (1981), he learned of this sequence from American mathematician Byron Leon McAllister (1929-2017) who attributed the invention of the sequence to a graduate student by the name of Doudna (first name Paul?) in the mid-1950's at the University of Wisconsin. - Amiram Eldar, Jun 17 2021
From David James Sycamore, Sep 23 2022: (Start)
Alternative (recursive) definition: If n is a power of 2 then a(n)=n. Otherwise, if 2^j is the greatest power of 2 not exceeding n, and if k = n - 2^j, then a(n) is the least m*a(k) that has not occurred previously, where m is an odd prime.
Example: Use recursion with n = 77 = 2^6 + 13. a(13) = 25 and since 11 is the smallest odd prime m such that m*a(13) has not already occurred (see a(27), a(29),a(45)), then a(77) = 11*25 = 275. (End)
The odd bisection, when transformed by replacing all prime(k)^e in a(2*n - 1) with prime(k-1)^e, returns a(n), and thus gives the sequence back. - David James Sycamore, Sep 28 2022

Examples

			From _N. J. A. Sloane_, Aug 22 2022: (Start)
Let c_i = number of 1's in binary expansion of n-1 that have i 0's to their right, and let p(j) = j-th prime.  Then a(n) = Product_i p(i+1)^c_i.
If n=9, n-1 is 1000, c_3 = 1, a(9) = p(4)^1 = 7.
If n=10, n-1 = 1001, c_0 = 1, c_2 = 1, a(10) = p(1)*p(3) = 2*5 = 10.
If n=11, n-1 = 1010, c_1 = 1, c_2 = 1, a(11) = p(2)*p(3) = 15. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A103969. Inverse is A005941 (A156552).
Cf. A125106. [From Franklin T. Adams-Watters, Mar 06 2010]
Cf. A252737 (gives row sums), A252738 (row products), A332979 (largest on row).
Related permutations of positive integers: A163511 (via A054429), A243353 (via A006068), A244154, A253563 (via A122111), A253565, A332977, A334866 (via A225546).
A000120, A003602, A003961, A006519, A053645, A070939, A246278, A250246, A252753, A253552 are used in a formula defining this sequence.
Formulas for f(a(n)) are given for f = A000265, A003963, A007949, A055396, A056239.
Numbers that occur at notable sets of positions in the binary tree representation of the sequence: A000040, A000079, A002110, A070003, A070826, A102750.
Cf. A106737, A290077, A323915, A324052, A324054, A324055, A324056, A324057, A324058, A324114, A324335, A324340, A324348, A324349 for various number-theoretical sequences applied to (i.e., permuted by) this sequence.
k-adic valuation: A007814 (k=2), A337821 (k=3).
Positions of multiples of 3: A091067.
Primorial deflation: A337376 / A337377.
Sum of prime indices of a(n) is A161511, reverse version A359043.
A048793 lists binary indices, ranked by A019565.
A066099 lists standard comps, partial sums A358134 (ranked by A358170).

Programs

  • Haskell
    a005940 n = f (n - 1) 1 1 where
       f 0 y _          = y
       f x y i | m == 0 = f x' y (i + 1)
               | m == 1 = f x' (y * a000040 i) i
               where (x',m) = divMod x 2
    -- Reinhard Zumkeller, Oct 03 2012
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library)
    (define (A005940 n) (A005940off0 (- n 1))) ;; The off=1 version, utilizing any one of three different offset-0 implementations:
    (definec (A005940off0 n) (cond ((< n 2) (+ 1 n)) (else (* (A000040 (- (A070939 n) (- (A000120 n) 1))) (A005940off0 (A053645 n))))))
    (definec (A005940off0 n) (cond ((<= n 2) (+ 1 n)) ((even? n) (A003961 (A005940off0 (/ n 2)))) (else (* 2 (A005940off0 (/ (- n 1) 2))))))
    (define (A005940off0 n) (let loop ((n n) (i 1) (x 1)) (cond ((zero? n) x) ((even? n) (loop (/ n 2) (+ i 1) x)) (else (loop (/ (- n 1) 2) i (* x (A000040 i)))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Maple
    f := proc(n,i,x) option remember ; if n = 0 then x; elif type(n,'even') then procname(n/2,i+1,x) ; else procname((n-1)/2,i,x*ithprime(i)) ; end if; end proc:
    A005940 := proc(n) f(n-1,1,1) ; end proc: # R. J. Mathar, Mar 06 2010
  • Mathematica
    f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; Table[ f[n], {n, 67}] (* Robert G. Wilson v, Feb 22 2005 *)
    Table[Times@@Prime/@(Join@@Position[Reverse[IntegerDigits[n,2]],1]-Range[DigitCount[n,2,1]]+1),{n,0,100}] (* Gus Wiseman, Dec 28 2022 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, n%2 && (t*=p) || p=nextprime(p+1)); t } \\ M. F. Hasler, Mar 07 2010; update Aug 29 2014
    
  • PARI
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); t \\ Charles R Greathouse IV, Nov 11 2021
    
  • Python
    from sympy import prime
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    print([b(n - 1) for n in range(1, 101)]) # Indranil Ghosh, Apr 10 2017
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A005940(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(n-1)[2:].split('1')[:0:-1])).items()) # Chai Wah Wu, Mar 10 2023

Formula

From Reinhard Zumkeller, Aug 23 2006, R. J. Mathar, Mar 06 2010: (Start)
a(n) = f(n-1, 1, 1)
where f(n, i, x) = x if n = 0,
= f(n/2, i+1, x) if n > 0 is even
= f((n-1)/2, i, x*prime(i)) otherwise. (End)
From Antti Karttunen, Jun 26 2014: (Start)
Define a starting-offset 0 version of this sequence as:
b(0)=1, b(1)=2, [base cases]
and then compute the rest either with recurrence:
b(n) = A000040(1+(A070939(n)-A000120(n))) * b(A053645(n)).
or
b(2n) = A003961(b(n)), b(2n+1) = 2 * b(n). [Compare this to the similar recurrence given for A163511.]
Then define a(n) = b(n-1), where a(n) gives this sequence A005940 with the starting offset 1.
Can be also defined as a composition of related permutations:
a(n+1) = A243353(A006068(n)).
a(n+1) = A163511(A054429(n)). [Compare the scatter plots of this sequence and A163511 to each other.]
This permutation also maps between the partitions as enumerated in the lists A125106 and A112798, providing identities between:
A161511(n) = A056239(a(n+1)). [The corresponding sums ...]
A243499(n) = A003963(a(n+1)). [... and the products of parts of those partitions.]
(End)
From Antti Karttunen, Dec 21 2014 - Jan 04 2015: (Start)
A002110(n) = a(1+A002450(n)). [Primorials occur at (4^n - 1)/3 in the offset-0 version of the sequence.]
a(n) = A250246(A252753(n-1)).
a(n) = A122111(A253563(n-1)).
For n >= 1, A055396(a(n+1)) = A001511(n).
For n >= 2, a(n) = A246278(1+A253552(n)).
(End)
From Peter Munn, Oct 04 2020: (Start)
A000265(a(n)) = a(A000265(n)) = A003961(a(A003602(n))).
A006519(a(n)) = a(A006519(n)) = A006519(n).
a(n) = A003961(a(A003602(n))) * A006519(n).
A007814(a(n)) = A007814(n).
A007949(a(n)) = A337821(n) = A007814(A003602(n)).
a(n) = A225546(A334866(n-1)).
(End)
a(2n) = 2*a(n), or generally a(2^k*n) = 2^k*a(n). - Amiram Eldar, Oct 03 2022
If n-1 = Sum_{i} 2^(q_i-1), then a(n) = Product_{i} prime(q_i-i+1). These are the Heinz numbers of the rows of A125106. If the offset is changed to 0, the inverse is A156552. - Gus Wiseman, Dec 28 2022

Extensions

More terms from Robert G. Wilson v, Feb 22 2005
Sign in a formula switched and Maple program added by R. J. Mathar, Mar 06 2010
Binary tree illustration and keyword tabf added by Antti Karttunen, Dec 21 2014

A163511 a(0)=1. a(n) = p(A000120(n)) * Product_{m=1..A000120(n)} p(m)^A163510(n,m), where p(m) is the m-th prime.

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 6, 5, 16, 27, 18, 25, 12, 15, 10, 7, 32, 81, 54, 125, 36, 75, 50, 49, 24, 45, 30, 35, 20, 21, 14, 11, 64, 243, 162, 625, 108, 375, 250, 343, 72, 225, 150, 245, 100, 147, 98, 121, 48, 135, 90, 175, 60, 105, 70, 77, 40, 63, 42, 55, 28, 33, 22, 13, 128
Offset: 0

Views

Author

Leroy Quet, Jul 29 2009

Keywords

Comments

This is a permutation of the positive integers.
From Antti Karttunen, Jun 20 2014: (Start)
Note the indexing: the domain starts from 0, while the range excludes zero, thus this is neither a bijection on the set of nonnegative integers nor on the set of positive natural numbers, but a bijection from the former set to the latter.
Apart from that discrepancy, this could be viewed as yet another "entanglement permutation" where the two complementary pairs to be interwoven together are even and odd numbers (A005843/A005408) which are entangled with the complementary pair even numbers (taken straight) and odd numbers in the order they appear in A003961: (A005843/A003961). See also A246375 which has almost the same recurrence.
Note how the even bisection halved gives the same sequence back. (For a(0)=1, take ceiling of 1/2).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
This irregular table can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A003961 to the parent:
1
|
...................2...................
4 3
8......../ \........9 6......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 27 18 25 12 15 10 7
32 81 54 125 36 75 50 49 24 45 30 35 20 21 14 11
etc.
Sequence A005940 is obtained by scanning the same tree level by level in mirror image fashion. Also in binary trees A253563 and A253565 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees, and A252463 gives the parent of the node containing n.
A252737(n) gives the sum and A252738(n) the product of terms on row n (where 1 is on row 0, 1 on row 1, 3 and 4 on row 2, etc.). A252745(n) gives the number of nodes on level n whose left child is smaller than the right child, and A252744(n) is an indicator function for those nodes.
(End)
Note that the idea behind maps like this (and the mirror image A005940) admits also using alternative orderings of primes, not just standard magnitude-wise ordering (A000040). For example, A332214 is a similar sequence but with primes rearranged as in A332211, and A332817 is obtained when primes are rearranged as in A108546. - Antti Karttunen, Mar 11 2020
From Lorenzo Sauras Altuzarra, Nov 28 2020: (Start)
This sequence is generated from A228351 by applying the following procedure: 1) eliminate the compositions that end in one unless the first one, 2) subtract one unit from every component, 3) replace every tuple [t_1, ..., t_r] by Product_{k=1..r} A000040(k)^(t_k) (see the examples).
Is it true that a(n) = A337909(n+1) if and only if a(n+1) is not a term of A161992?
Does this permutation have any other cycle apart from (1), (2) and (6, 9, 16, 7)? (End)
From Antti Karttunen, Jul 25 2023: (Start)
(In the above question, it is assumed that the starting offset would be 1 instead of 0).
Questions:
Does a(n) = 1+A054429(n) hold only when n is of the form 2^k times 1, 3 or 7, i.e., one of the terms of A029748?
It seems that A007283 gives all fixed points of map n -> a(n), like A335431 seems to give all fixed points of map n -> A332214(n). Is there a general rule for mappings like these that the fixed points (if they exist) must be of the form 2^k times a certain kind of prime, i.e., that any odd composite (times 2^k) can certainly be excluded? See also note in A029747.
(End)
If the conjecture given in A364297 holds, then it implies the above conjecture about A007283. See also A364963. - Antti Karttunen, Sep 06 2023
Conjecture: a(n^k) is never of the form x^k, for any integers n > 0, k > 1, x >= 1. This holds at least for squares, cubes, seventh and eleventh powers (see A365808, A365801, A366287 and A366391). - Antti Karttunen, Sep 24 2023, Oct 10 2023.
See A365805 for why the above holds for any n^k, with k > 1. - Antti Karttunen, Nov 23 2023

Examples

			For n=3, whose binary representation is "11", we have A000120(3)=2, with A163510(3,1) = A163510(3,2) = 0, thus a(3) = p(2) * p(1)^0 * p(2)^0 = 3*1*1 = 3.
For n=9, "1001" in binary, we have A000120(9)=2, with A163510(9,1) = 0 and A163510(9,2) = 2, thus a(9) = p(2) * p(1)^0 * p(2)^2 = 3*1*9 = 27.
For n=10, "1010" in binary, we have A000120(10)=2, with A163510(10,1) = 1 and A163510(10,2) = 1, thus a(10) = p(2) * p(1)^1 * p(2)^1 = 3*2*3 = 18.
For n=15, "1111" in binary, we have A000120(15)=4, with A163510(15,1) = A163510(15,2) = A163510(15,3) = A163510(15,4) = 0, thus a(15) = p(4) * p(1)^0 * p(2)^0 * p(3)^0 * p(4)^0 = 7*1*1*1*1 = 7.
[1], [2], [1,1], [3], [1,2], [2,1] ... -> [1], [2], [3], [1,2], ... -> [0], [1], [2], [0,1], ... -> 2^0, 2^1, 2^2, 2^0*3^1, ... = 1, 2, 4, 3, ... - _Lorenzo Sauras Altuzarra_, Nov 28 2020
		

Crossrefs

Inverse: A243071.
Cf. A007283 (known positions where a(n)=n), A029747, A029748, A364255 [= gcd(n,a(n))], A364258 [= a(n)-n], A364287 (where a(n) < n), A364292 (where a(n) <= n), A364494 (where n|a(n)), A364496 (where a(n)|n), A364963, A364297.
Cf. A365808 (positions of squares), A365801 (of cubes), A365802 (of fifth powers), A365805 [= A052409(a(n))], A366287, A366391.
Cf. A005940, A332214, A332817, A366275 (variants).

Programs

  • Mathematica
    f[n_] := Reverse@ Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]]; {1}~Join~
    Table[Function[t, Prime[t] Product[Prime[m]^(f[n][[m]]), {m, t}]][DigitCount[n, 2, 1]], {n, 120}] (* Michael De Vlieger, Jul 25 2016 *)
  • Python
    from sympy import prime
    def A163511(n):
        if n:
            k, c, m = n, 0, 1
            while k:
                c += 1
                m *= prime(c)**(s:=(~k&k-1).bit_length())
                k >>= s+1
            return m*prime(c)
        return 1 # Chai Wah Wu, Jul 17 2023

Formula

For n >= 1, a(2n) is even, a(2n+1) is odd. a(2^k) = 2^(k+1), for all k >= 0.
From Antti Karttunen, Jun 20 2014: (Start)
a(0) = 1, a(1) = 2, a(2n) = 2*a(n), a(2n+1) = A003961(a(n)).
As a more general observation about the parity, we have:
For n >= 1, A007814(a(n)) = A135523(n) = A007814(n) + A209229(n). [This permutation preserves the 2-adic valuation of n, except when n is a power of two, in which cases that value is incremented by one.]
For n >= 1, A055396(a(n)) = A091090(n) = A007814(n+1) + 1 - A036987(n).
For n >= 1, a(A000225(n)) = A000040(n).
(End)
From Antti Karttunen, Oct 11 2014: (Start)
As a composition of related permutations:
a(n) = A005940(1+A054429(n)).
a(n) = A064216(A245612(n))
a(n) = A246681(A246378(n)).
Also, for all n >= 0, it holds that:
A161511(n) = A243503(a(n)).
A243499(n) = A243504(a(n)).
(End)
More linking identities from Antti Karttunen, Dec 30 2017: (Start)
A046523(a(n)) = A278531(n). [See also A286531.]
A278224(a(n)) = A285713(n). [Another filter-sequence.]
A048675(a(n)) = A135529(n) seems to hold for n >= 1.
A250245(a(n)) = A252755(n).
A252742(a(n)) = A252744(n).
A245611(a(n)) = A253891(n).
A249824(a(n)) = A275716(n).
A292263(a(n)) = A292264(n). [A292944(n) + A292264(n) = n.]
--
A292383(a(n)) = A292274(n).
A292385(a(n)) = A292271(n). [A292271(n) + A292274(n) = n.]
--
A292941(a(n)) = A292942(n).
A292943(a(n)) = A292944(n).
A292945(a(n)) = A292946(n). [A292942(n) + A292944(n) + A292946(n) = n.]
--
A292253(a(n)) = A292254(n).
A292255(a(n)) = A292256(n). [A292944(n) + A292254(n) + A292256(n) = n.]
--
A279339(a(n)) = A279342(n).
a(A071574(n)) = A269847(n).
a(A279341(n)) = A279338(n).
a(A252756(n)) = A250246(n).
(1+A008836(a(n)))/2 = A059448(n).
(End)
From Antti Karttunen, Jul 26 2023: (Start)
For all n >= 0, a(A007283(n)) = A007283(n).
A001222(a(n)) = A290251(n).
(End)

Extensions

More terms computed and examples added by Antti Karttunen, Jun 20 2014

A252464 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A064989(2n+1)); also binary width of terms of A156552 and A243071.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 4, 7, 4, 8, 5, 5, 6, 9, 5, 4, 7, 4, 6, 10, 5, 11, 5, 6, 8, 5, 5, 12, 9, 7, 6, 13, 6, 14, 7, 5, 10, 15, 6, 5, 5, 8, 8, 16, 5, 6, 7, 9, 11, 17, 6, 18, 12, 6, 6, 7, 7, 19, 9, 10, 6, 20, 6, 21, 13, 5, 10, 6, 8, 22, 7, 5, 14, 23, 7, 8, 15, 11, 8, 24, 6, 7, 11, 12, 16, 9, 7, 25, 6, 7, 6, 26, 9, 27
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2014

Keywords

Comments

a(n) tells how many iterations of A252463 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A005940 and A163511.
Similarly for A253553 in trees A253563 and A253565. - Antti Karttunen, Apr 14 2019

Examples

			From _Gus Wiseman_, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) is the size of the inner lining of the integer partition with Heinz number n, which is also the size of the largest hook of the same partition. For example, the partition with Heinz number 715 is (6,5,3), with diagram
  o o o o o o
  o o o o o
  o o o
which has inner lining
          o o
      o o o
  o o o
and largest hook
  o o o o o o
  o
  o
both of which have size 8, so a(715) = 8.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,PrimeOmega[n]+PrimePi[FactorInteger[n][[-1,1]]]]-1,{n,100}] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = (bigomega(n) + A061395(n) - 1); \\ Antti Karttunen, Apr 14 2019
    
  • Python
    from sympy import primepi, primeomega, primefactors
    def A252464(n): return primeomega(n)+primepi(max(primefactors(n)))-1 if n>1 else 0 # Chai Wah Wu, Jul 17 2023

Formula

a(1) = 0; for n > 1: a(n) = 1 + a(A252463(n)).
a(n) = A029837(1+A243071(n)). [a(n) = binary width of terms of A243071.]
a(n) = A029837(A005941(n)) = A029837(1+A156552(n)). [Also binary width of terms of A156552.]
Other identities. For all n >= 1:
a(A000040(n)) = n.
a(A001248(n)) = n+1.
a(A030078(n)) = n+2.
And in general, a(prime(n)^k) = n+k-1.
a(A000079(n)) = n. [I.e., a(2^n) = n.]
For all n >= 2:
a(n) = A001222(n) + A061395(n) - 1 = A001222(n) + A252735(n) = A061395(n) + A252736(n) = 1 + A252735(n) + A252736(n).
a(n) = A325134(n) - 1. - Gus Wiseman, Apr 02 2019
From Antti Karttunen, Apr 14 2019: (Start)
a(1) = 0; for n > 1: a(n) = 1 + a(A253553(n)).
a(n) = A001221(n) + A297167(n) = A297113(n) + A297155(n).
(End).

A253565 Permutation of natural numbers: a(0) = 1, a(1) = 2; after which, a(2n) = A253550(a(n)), a(2n+1) = A253560(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 8, 7, 25, 15, 27, 10, 18, 12, 16, 11, 49, 35, 125, 21, 75, 45, 81, 14, 50, 30, 54, 20, 36, 24, 32, 13, 121, 77, 343, 55, 245, 175, 625, 33, 147, 105, 375, 63, 225, 135, 243, 22, 98, 70, 250, 42, 150, 90, 162, 28, 100, 60, 108, 40, 72, 48, 64, 17, 169, 143, 1331, 91, 847, 539, 2401, 65, 605, 385, 1715, 275, 1225, 875, 3125, 39
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A253550 to the parent, and each child to the right is obtained by applying A253560 to the parent:
1
|
...................2...................
3 4
5......../ \........9 6......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 25 15 27 10 18 12 16
11 49 35 125 21 75 45 81 14 50 30 54 20 36 24 32
etc.
Sequence A253563 is the mirror image of the same tree. Also in binary trees A005940 and A163511 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees. Of these four trees, this is the one where the left child is always smaller than the right child.
Note that the indexing of sequence starts from 0, although its range starts from one.
The term a(n) is the Heinz number of the adjusted partial sums of the n-th composition in standard order, where (1) the k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again, (2) the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), and (3) we define the adjusted partial sums of a composition to be obtained by subtracting one from all parts, taking partial sums, and adding one back to all parts. See formula for a simplification. A triangular form is A242628. The inverse is A253566. The non-adjusted version is A358170. - Gus Wiseman, Dec 17 2022

Examples

			From _Gus Wiseman_, Dec 23 2022: (Start)
This represents the following bijection between compositions and partitions. The n-th composition in standard order together with the reversed prime indices of a(n) are:
   0:        () -> ()
   1:       (1) -> (1)
   2:       (2) -> (2)
   3:     (1,1) -> (1,1)
   4:       (3) -> (3)
   5:     (2,1) -> (2,2)
   6:     (1,2) -> (2,1)
   7:   (1,1,1) -> (1,1,1)
   8:       (4) -> (4)
   9:     (3,1) -> (3,3)
  10:     (2,2) -> (3,2)
  11:   (2,1,1) -> (2,2,2)
  12:     (1,3) -> (3,1)
  13:   (1,2,1) -> (2,2,1)
  14:   (1,1,2) -> (2,1,1)
  15: (1,1,1,1) -> (1,1,1,1)
(End)
		

Crossrefs

Inverse: A253566.
Cf. A252737 (row sums), A252738 (row products).
Applying A001222 gives A000120.
A reverse version is A005940.
These are the Heinz numbers of the rows of A242628.
Sum of prime indices of a(n) is A359043, reverse A161511.
A048793 gives partial sums of reversed standard comps, Heinz number A019565.
A066099 lists standard compositions.
A112798 list prime indices, sum A056239.
A358134 gives partial sums of standard compositions, Heinz number A358170.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Times@@Prime/@#&/@Table[Accumulate[stc[n]-1]+1,{n,0,60}] (* Gus Wiseman, Dec 17 2022 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A253550(a(n)), a(2n+1) = A253560(a(n)).
As a composition of related permutations:
a(n) = A122111(A163511(n)).
a(n) = A253563(A054429(n)).
Other identities and observations. For all n >= 0:
a(2n+1) - a(2n) > 0. [See the comment above.]
If n = 2^(x_1)+...+2^(x_k) then a(n) = Product_{i=1..k} prime(x_k-x_{i-1}-k+i) where x_0 = 0. - Gus Wiseman, Dec 23 2022

A368900 LCM-transform of Doudna sequence.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 3, 2, 7, 1, 1, 1, 5, 1, 3, 2, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Let's define "property S" for sequences as follows: If s is any sequence of positive natural numbers, normalized to begin with offset 1, then it satisfies the S-property if LCM-transform(s) is equal to the sequence obtained by applying A014963 to sequence s, or in other words, when for all n >= 1, lcm {s(1)..s(n)} / lcm {s(1)..s(n-1)} = A014963(s(n)). This holds if and only if, for all n >= 1, when, either (case A): s(n) is of the form p^k, p prime, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to p^(k-1), or (case B): when s(n) is not a prime power, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to s(n). Together the cases (A) and (B) reduce to the condition that each prime power should appear in s before any of its multiples do.
Clearly the Doudna-sequence satisfies the property by the way of its construction, as do many of its variants like A356867 (see A369060).
Also, for any base-2 related permutation b that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., if for all n >= 1, A000523(b(n)) = A000523(n), then the above property is automatically satisfied.
Furthermore, because in Doudna-sequence no multiple of any term is located on the same row as the term itself (see the tree-illustration in A005940), it follows that any composition of A005940 with any such base-2 related permutation as mentioned above also automatically satisfies the S-property, for example, the permutations A163511, A243353, A253563, A253565, A366260, A366263 and A366275.
Note: Like A005940 itself, also this sequence might be more logical with the starting offset 0 instead of 1, to better align with the underlying mapping from the binary expansion of n to the prime factorization. - Antti Karttunen, Jan 24 2024

Crossrefs

List of LCM-transforms of permutations (permutation given in parentheses):
Cf. A265576 (A064413; note that the EKG sequence permutation does not satisfy the S-property).
In all following cases, the permutation satisfies the S-property:
Cf. A369041 (A003188), A369042 (A006068), A369043 (A193231), A369044 (A057889), A369041 (A054429). [Base-2 related permutations]
Other permutations that have the same property: A303767, (and when used as an offset=1 sequence): A052330.

Programs

  • Mathematica
    nn = 120; Array[Set[{s[#], a[#]}, {#, #}] &, 2]; j = 2;
    Do[If[EvenQ[n],
      Set[s[n], 2 s[n/2]],
      Set[s[n],
        Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &,
          FactorInteger[s[(n + 1)/2]]]]];
      k = LCM[j, s[n]]; a[n] = k/j; j = k, {n, 3, nn}];
    Array[a, nn] (* Michael De Vlieger, Mar 24 2024 *)
  • PARI
    up_to = 16384;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t) };
    v368900 = LCMtransform(vector(up_to,i,A005940(i)));
    A368900(n) = v368900[n];
    
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A209229(n) = (n && !bitand(n,n-1));
    A368900(n)  = if(1==n, 1, my(x=A000265(n-1)); if(A209229(1+x), prime(1+valuation(n-1,2)), 1));

Formula

a(n) = A368901(n) / A368901(n-1) = lcm {1..A005940(n)} / lcm {1..A005940(n-1)}.
a(n) = A005940(n) / gcd(A005940(n), A368901(n-1)).
a(n) = A014963(A005940(n)). [Because A005940 satisfies the property given in the comments]
For n >= 1, Product_{d|n} a(A005941(d)) = n. [Implied by above]
For n >= 1, a(n) = A369030(1+A054429(n-1)).
For n > 1, if n-1 is a number of the form 2^i - 2^j with i >= j, then a(n) = prime(1+j), otherwise a(n) = 1.

A253560 Multiply n by its largest prime factor: a(n) = A006530(n) * n.

Original entry on oeis.org

1, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 75, 32, 289, 54, 361, 100, 147, 242, 529, 72, 125, 338, 81, 196, 841, 150, 961, 64, 363, 578, 245, 108, 1369, 722, 507, 200, 1681, 294, 1849, 484, 225, 1058, 2209, 144, 343, 250, 867, 676, 2809, 162, 605, 392, 1083, 1682, 3481, 300, 3721, 1922, 441
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Essentially the same as A129598, except that here we have a(1) = 1.
Cf. A070003 (same sequence without 1, sorted into ascending order).
Differs from A072995 for the first time at n=15, where a(15) = 75, while A072995(15) = 225.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006530(n) * n = A000040(A061395(n)) * n.
Other identities:
a(n) >= A253550(n) for all n >= 1.
a(n) = A129598(n) for all n >= 2.
A052126(a(n)) = n. [A052126 works as an inverse function for this injection.]

A366275 The Cat's tongue permutation: a(n) = A163511(A057889(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 6, 5, 16, 27, 18, 15, 12, 25, 10, 7, 32, 81, 54, 45, 36, 75, 30, 21, 24, 125, 50, 35, 20, 49, 14, 11, 64, 243, 162, 135, 108, 225, 90, 63, 72, 375, 150, 105, 60, 147, 42, 33, 48, 625, 250, 175, 100, 245, 70, 55, 40, 343, 98, 77, 28, 121, 22, 13, 128, 729, 486, 405, 324, 675, 270, 189, 216, 1125
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Comments

"Cat's tongue" refers to the look of the scatter plot of this sequence.

Crossrefs

Cf. A000040, A000225, A007814, A057889, A163511, A209229, A290251, A366276 (inverse map), A366277 (fixed points of map n -> a(n)), A366278, A366279, A366280, A366281 [= A052409(a(n))], A366282 [= a(n)-n], A366283 [= gcd(n,a(n))].
Cf. also A163511, A253563, A366263 (compare the scatter plots).

Programs

  • PARI
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2)));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A366275(n) = A163511(A057889(n));
    
  • Python
    from sympy import prime
    def A366275(n):
        if n:
            k, c, m = int(bin(n>>(r:=(~n & n-1).bit_length()))[:1:-1],2)<>= s+1
            return m*prime(c)
        return 1 # Chai Wah Wu, Oct 08 2023

Formula

For n >= 0, A001222(a(n)) = A290251(n).
For n >= 1, A007814(a(n)) = A135523(n) = A007814(n) + A209229(n). [Like A163511, also this permutation preserves the 2-adic valuation of n, except when n is a power of two, in which cases that value is incremented by one.]
For n >= 1, a(2*n) = 2*a(n).
For n >= 1, a(A000225(n)) = A000040(n).

A253550 Shift one instance of the largest prime one step towards larger primes: a(1) = 1, for n>1: a(n) = (n / prime(g)) * prime(g+1), where g = A061395(n), index of the greatest prime dividing n.

Original entry on oeis.org

1, 3, 5, 6, 7, 10, 11, 12, 15, 14, 13, 20, 17, 22, 21, 24, 19, 30, 23, 28, 33, 26, 29, 40, 35, 34, 45, 44, 31, 42, 37, 48, 39, 38, 55, 60, 41, 46, 51, 56, 43, 66, 47, 52, 63, 58, 53, 80, 77, 70, 57, 68, 59, 90, 65, 88, 69, 62, 61, 84, 67, 74, 99, 96, 85, 78, 71, 76, 87, 110, 73, 120, 79, 82, 105, 92, 91, 102, 83, 112, 135, 86, 89
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Inverse: A252462.
Cf. A102750 (same terms, but with 2 instead of 1, sorted into ascending order).

Programs

Formula

a(1) = 1; for n>1: a(n) = A065091(A061395(n)) * A052126(n).
Other identities. For all n >= 1:
A252462(a(n)) = n. [A252462 works as an inverse function for this injection.]
a(n) <= A253560(n).

A253553 a(1) = 1; for n>1, if A241917(n) = 0 [i.e., n is a term of A070003], a(n) = A052126(n), otherwise a(n) = A252462(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 4, 3, 6, 7, 8, 11, 10, 9, 8, 13, 6, 17, 12, 15, 14, 19, 16, 5, 22, 9, 20, 23, 18, 29, 16, 21, 26, 25, 12, 31, 34, 33, 24, 37, 30, 41, 28, 27, 38, 43, 32, 7, 10, 39, 44, 47, 18, 35, 40, 51, 46, 53, 36, 59, 58, 45, 32, 55, 42, 61, 52, 57, 50, 67, 24, 71, 62, 15, 68, 49, 66, 73, 48, 27
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

If the exponent of the largest prime dividing n is larger than one, subtract one from that exponent. Otherwise, shift that "lonely largest prime" one step towards smaller primes.
For any number n >= 2 in binary trees A253563 and A253565, a(n) gives the number which is the parent of n.

Crossrefs

Cf. A252464 (the number of iterations of n -> a(n) needed to reach 1 from n.)

Programs

  • PARI
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f)); \\ Antti Karttunen, Jul 17 2020
    
  • Scheme
    (define (A253553 n) (cond ((<= n 1) n) ((zero? (A241917 n)) (A052126 n)) (else (A252462 n))))

Formula

a(1) = 1; for n>1, if A241917(n) = 0 [i.e., n is a term of A070003], a(n) = A052126(n), otherwise a(n) = A252462(n).
a(n) = A122111(A252463(A122111(n))). - Antti Karttunen, Jul 14 2020

A290253 Triangle read by rows. Row n consists of the parts, ordered nonincreasingly, of the integer partition having viabin number n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 3, 2, 3, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 2, 1, 3, 2, 1, 3, 3, 1, 4, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 4, 2, 3, 3, 3, 4, 3, 4, 4, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 3, 2, 1, 1, 3, 3, 1, 1, 4, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 1, 3, 3, 2, 1, 4, 2, 1, 3, 3, 3, 1, 4, 3, 1, 4, 4, 1, 5, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2
Offset: 0

Views

Author

Emeric Deutsch, Aug 23 2017

Keywords

Comments

The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20.
Number of entries in row n is A290251(n).
In the Maple program the command vitopart(n) yields the integer partition having viabin number n.

Examples

			Row 25 is 3,2,2. Indeed, the binary form of 25 is 11001. Consequently, the southeast border of the Ferrers board of the associated partition is EENNEN, where E and N are the steps [1,0] and [0,1], respectively. This leads to the partition [3,2,2].
Triangle begins:
0,
1;
1,1;
2;
1,1,1;
2,1;
2,2;
3;
		

Crossrefs

Row sums give A161511.
Row lengths give A008687(n+1).

Programs

  • Maple
    # (due to W. Edwin Clark)
    vitopart := proc (n) local L, i, j, N, p, t; N := 2*n; L := ListTools:-Reverse(convert(N, base, 2)); j := 0; for i to nops(L) do if L[i] = 0 then j := j+1; p[j] := numboccur(L[1 .. i], 1) end if end do; sort([seq(p[t], t = 1 .. j)], `>=`) end proc:
    # second Maple program:
    T:= proc(n) local m; m:= n; [0]; while m>0 do `if`(1=
          irem(m, 2, 'm'), map(x-> x+1, %), [%[], 0]) od: %[]
        end:
    seq(T(n), n=0..50);  # Alois P. Heinz, Aug 23 2017
  • Mathematica
    T[n_] := Module[{L = IntegerDigits[2n, 2], j = 0, p}, Do[If[L[[i]] == 0, j++; p[j] = Count[L[[;;i]], 1]], {i, 1, Length[L]}]; Array[p, j] // Reverse];
    Table[T[n], {n, 0, 50}] // Flatten (* Jean-François Alcover, Aug 06 2024, after W. Edwin Clark *)
Previous Showing 11-20 of 25 results. Next