cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A168668 a(n) = n*(2 + 5*n).

Original entry on oeis.org

0, 7, 24, 51, 88, 135, 192, 259, 336, 423, 520, 627, 744, 871, 1008, 1155, 1312, 1479, 1656, 1843, 2040, 2247, 2464, 2691, 2928, 3175, 3432, 3699, 3976, 4263, 4560, 4867, 5184, 5511, 5848, 6195, 6552, 6919, 7296, 7683, 8080, 8487, 8904, 9331, 9768, 10215, 10672
Offset: 0

Views

Author

Paul Curtz, Dec 02 2009

Keywords

Comments

Appears on the main diagonal of the following table of terms of the Hydrogen series, A169603:
0, 3, 8, 15, 24, ... A005563
0, 7, 16, 1, 40, 55, ... A061039
0, 11, 24, 39, 56, 3, 96, ... A061043
0, 15, 32, 51, 72, 95, 120, ... A061047
0, 19, 40, 63, 88, 115, 144, 175, 208, 1, ...

Crossrefs

Programs

Formula

G.f.: x*(7 + 3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
First differences: a(n) - a(n-1) = 10*n-3.
Second differences: a(n) - 2*a(n-1) + a(n-2) = 10 = A010692(n).
a(n) = A131242(10n+6). - Philippe Deléham, Mar 27 2013
a(n) = A000384(n) + 6*A000217(n). - Luciano Ancora, Mar 28 2015
a(n) = A000217(n) + A000217(3*n). - Bruno Berselli, Jul 01 2016
E.g.f.: x*(7 + 5*x)*exp(x). - G. C. Greubel, Jul 29 2016
Sum_{n>=1} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/4 + sqrt(5)*log(phi)/4 - 5*log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023

Extensions

Edited and extended by R. J. Mathar, Dec 05 2009

A218530 Partial sums of floor(n/11).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008729.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
		

Crossrefs

Formula

a(11n) = A051865(n).
a(11n+1) = A180223(n).
a(11n+4) = A022268(n).
a(11n+5) = A022269(n).
a(11n+6) = A254963(n)
a(11n+9) = A211013(n).
a(11n+10) = A152740(n).
G.f.: x^11/((1-x)^2*(1-x^11)).

A254407 a(n) = n*(n+1)*(11*n +10)/6.

Original entry on oeis.org

0, 7, 32, 86, 180, 325, 532, 812, 1176, 1635, 2200, 2882, 3692, 4641, 5740, 7000, 8432, 10047, 11856, 13870, 16100, 18557, 21252, 24196, 27400, 30875, 34632, 38682, 43036, 47705, 52700, 58032, 63712, 69751, 76160, 82950, 90132, 97717, 105716, 114140, 123000
Offset: 0

Views

Author

Bruno Berselli, Jan 30 2015

Keywords

Comments

Similar sequences of the type m*P(s,m) - Sum_{i=1..m} P(s-1,i), where P(s,m) is the m-th s-gonal number:
s=3: A027480(n) = (n+1)*A000217(n+1) - Sum_{i=1..n+1} i;
s=4: A162148(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i);
s=5: A245301(n) = (n+1)*A000326(n+1) - Sum_{i=1..n+1} A000290(i);
s=6: A085788(n) = (n+1)*A000384(n+1) - Sum_{i=1..n+1} A000326(i);
s=7: a(n) = (n+1)*A000566(n+1) - Sum_{i=1..n+1} A000384(i).

Examples

			532 is the 7th term because A000566(7)=112 and Sum_{i=1..7} A000384(i)=252, therefore 7*112-252 = 532.
		

Crossrefs

Programs

  • Magma
    [n*(n+1)*(11*n+10)/6: n in [0..40]];
    
  • Maple
    A254407:= n-> n*(n+1)*(11*n+10)/6; seq(A254407(n), n=0..50); # G. C. Greubel, Mar 31 2021
  • Mathematica
    Table[n (n + 1) (11 n + 10)/6, {n, 0, 40}]
    Column[CoefficientList[Series[x (7 + 4 x) / (1 - x)^4, {x, 0, 60}], x]] (* Vincenzo Librandi, Jan 31 2015 *)
  • Maxima
    makelist(n*(n+1)*(11*n+10)/6, n, 0, 40);
  • PARI
    vector(40, n, n--; n*(n+1)*(11*n+10)/6)
    
  • Sage
    [n*(n+1)*(11*n+10)/6 for n in (0..40)]
    

Formula

G.f.: x*(7 + 4*x)/(1 - x)^4.
a(-n) = -A132112(n-1).
a(n) = Sum_{k=0..n} A011875(11*k+2).
Equivalently, partial sums of A254963.
E.g.f.: x*(42 + 54*x + 11*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021

A202803 a(n) = n*(5*n+1).

Original entry on oeis.org

0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

First bisection of A219190. - Bruno Berselli, Nov 15 2012
a(n)*Pi is the total length of 5 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A017341. The spiral length ratio rounded down [floor(L(n)/L(1))] is A032793. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

Examples

			G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
		

Crossrefs

Cf. sequences listed in A254963.

Programs

Formula

a(n) = 5*n^2 + n.
a(n) = A033429(n) + n. - Omar E. Pol, Dec 24 2011
G.f.: 2*x*(3+2*x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 6, a(2) = 22. - Philippe Deléham, Mar 27 2013
a(n) = A131242(10n+5). - Philippe Deléham, Mar 27 2013
a(n) = 2*A005475(n). - Philippe Deléham, Mar 27 2013
a(n) = A168668(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = (n+1)^3 - (1 + n + n*(n-1) + n*(n-1)*(n-2)). - Michael Somos, Aug 10 2014
E.g.f.: x*(6+5*x)*exp(x). - G. C. Greubel, Aug 22 2017
Sum_{n>=1} 1/a(n) = 5*(1-log(5)/4) - sqrt(1+2/sqrt(5))*Pi/2 -sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022
Previous Showing 11-14 of 14 results.