cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A074851 Numbers k such that k and k+1 both have exactly 2 distinct prime factors.

Original entry on oeis.org

14, 20, 21, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 111, 115, 116, 117, 118, 122, 123, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 152, 158, 159, 160, 161, 171, 175, 176, 177, 183, 184
Offset: 1

Views

Author

Benoit Cloitre, Sep 10 2002

Keywords

Comments

Subsequence of A006049. - Michel Marcus, May 06 2016

Examples

			20=2^2*5 21=3*7 hence 20 is in the sequence.
		

Crossrefs

Analogous sequences for m distinct prime factors: this sequence (m=2), A140077 (m=3), A140078 (m=4), A140079 (m=5), A273879 (m=6).
Cf. A093548.
Equals A255346 \ A321502.

Programs

  • GAP
    Filtered([1..200],n->[Size(Set(Factors(n))),Size(Set(Factors(n+1)))]=[2,2]); # Muniru A Asiru, Dec 05 2018
    
  • Magma
    [n: n in [2..200] | #PrimeDivisors(n) eq 2 and #PrimeDivisors(n+1) eq 2]; // Vincenzo Librandi, Dec 05 2018
    
  • Mathematica
    Flatten[Position[Partition[Table[If[PrimeNu[n]==2,1,0],{n,200}],2,1],{1,1}]] (* Harvey P. Dale, Mar 12 2015 *)
  • PARI
    isok(n) = (omega(n) == 2) && (omega(n+1) == 2); \\ Michel Marcus, May 06 2016
    
  • Python
    import sympy
    from sympy.ntheory.factor_ import primenu
    for n in range(1,200):
        if primenu(n)==2 and primenu(n+1)==2:
            print(n, end=', '); # Stefano Spezia, Dec 05 2018

Formula

a(n) seems to be asymptotic to c*n*log(n)^2 with c=0.13...
{k: A001221(k) = A001221(k+1) = 2}. - R. J. Mathar, Jul 18 2023

A375734 Indices of consecutive prime-powers (exclusive) differing by 1. Positions of 1's in A057820.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 17, 43, 70, 1077, 6635, 12369, 43578, 105102700
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2024

Keywords

Comments

The corresponding prime-powers A246655(a(n)) are given by A006549.
From A006549, it is not known whether this sequence is infinite.

Examples

			The fifth prime-power is 7 and the sixth is 8, so 5 is in the sequence.
		

Crossrefs

For nonprime numbers (A002808) we have A375926, differences A373403.
Positions of 1's in A057820.
First differences are A373671.
For nonsquarefree numbers we have A375709, differences A373409.
For non-prime-powers we have A375713.
For non-perfect-powers we have A375740.
For squarefree numbers we have A375927, differences A373127.
Prime-powers:
- terms: A000961, complement A024619.
- differences: A057820.
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708
- anti-runs: A373679, A373575, A255346, A373672
A000040 lists all of the primes, differences A001223.
A025528 counts prime-powers up to n.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],PrimePowerQ]],1]

Formula

Numbers k such that A246655(k+1) - A246655(k) = 1.
The inclusive version is a(n) + 1 shifted.

Extensions

a(14) from Amiram Eldar, Sep 24 2024

A321503 Numbers m such that m and m+1 both have at least 3 distinct prime factors.

Original entry on oeis.org

230, 285, 429, 434, 455, 494, 560, 594, 609, 615, 644, 645, 650, 665, 714, 740, 741, 759, 804, 805, 819, 825, 854, 860, 884, 902, 935, 945, 969, 986, 987, 1001, 1014, 1022, 1034, 1035, 1044, 1064, 1065, 1070, 1085, 1104, 1105, 1130, 1196, 1209, 1220, 1221, 1235, 1239, 1245, 1265
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2018

Keywords

Comments

Disjoint union of A140077 (omega({m, m+1}) = {3}) and A321493 (not both have exactly 3 prime divisors). The latter contains terms with indices {15, 60, 82, 98, 99, 104, ...} of this sequence.
Numbers m and m+1 can never have a common prime factor (consider them mod p), therefore the terms are > sqrt(A002110(3+3)), A002110 = primorial.

Crossrefs

Subsequence of A000977.
Cf. A255346, A321504 .. A321506, A321489 (analog for k = 2, ..., 7 prime divisors).
Cf. A321493, A321494 .. A321497 (subsequences of the above: m or m+1 has more than k prime divisors).
Cf. A074851, A140077, A140078, A140079 (complementary subsequences: m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n], PrimeNu[n+1]}}, Min[v]>2]; Select[Range[1300], aQ] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    select( is(n)=omega(n)>2&&omega(n+1)>2, [1..1300])

Formula

a(n) ~ n. - Charles R Greathouse IV, Jan 25 2025

A375739 Maximum of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

2, 5, 6, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.
Also non-perfect-powers x such that x + 1 is also a non-perfect-power.

Examples

			The initial anti-runs are the following, whose maxima are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For nonprime numbers we have A068780, runs A006093 with 2 removed.
For squarefree numbers we have A007674, runs A373415.
For nonsquarefree numbers we have A068781, runs A072284 minus 1 and shifted.
For prime-powers we have A006549, runs A373674.
For non-prime-powers we have A255346, runs A373677.
For anti-runs of non-perfect-powers:
- length: A375736
- first: A375738
- last: A375739 (this)
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Max/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most
    - or -
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Select[Range[100],radQ[#]&&radQ[#+1]&]

A321489 Numbers m such that both m and m+1 have at least 7 distinct prime factors.

Original entry on oeis.org

965009045, 1068044054, 1168008204, 1177173074, 1209907985, 1218115535, 1240268490, 1338753129, 1344185205, 1408520805, 1477640450, 1487720234, 1509981395, 1663654629, 1693460405, 1731986894, 1758259425, 1819458354, 1821278459, 1826445984, 1857332840
Offset: 1

Views

Author

Amiram Eldar and M. F. Hasler, Nov 12 2018

Keywords

Comments

The first 300 terms of this sequence are such that m and m+1 both have exactly 7 prime divisors. See A321497 for the terms m such that m or m+1 has more than 7 prime factors: the smallest such term is 5163068910.
Numbers m and m+1 can never have a common prime factor (consider them mod p), therefore the terms are > sqrt(p(7+7)#) = A003059(A002110(7+7)). (Here we see that sqrt(p(7+8)#) is a more realistic estimate of a(1), but for smaller values of k we may have sqrt(p(2k+1)#) > m(k) > sqrt(p(2k)#), where m(k) is the smallest of two consecutive integers each having at least k prime divisors. For example, A321503(1) < sqrt(p(3+4)#) ~ A321493(1).)
From M. F. Hasler, Nov 28 2018: (Start)
The first 100 terms and beyond are all congruent to one of {14, 20, 35, 49, 50, 69, 84, 90, 104, 105, 110, 119, 125, 129, 134, 140, 144, 170, 174, 189, 195} mod 210. Here, 35, 195, 189, 14 140, 20 and 174 (in order of decreasing frequency) occur between 6 and 13 times, and {49, 50, 110, 129, 134, 144, 170} occur only once.
However, as observed by Charles R Greathouse IV, one can construct a term of this sequence congruent to any given m > 0, modulo any given n > 0.
The first terms of this sequence which are multiples of 210 are in A321497. An example of a term that is a multiple of 210 but not in A321497 is 29759526510, due to Charles R Greathouse IV. Such examples can be constructed by solving A*210 + 1 = B for A having 3 distinct prime factors not among {2, 3, 5, 7}, B having 7 distinct prime factors and gcd(B, 210*A) = 1. (End)

Examples

			a(1) = 5 * 7 * 11 * 13 * 23 * 83 * 101, a(1)+1 = 2 * 3 * 17 * 29 * 41 * 73 * 109.
		

Crossrefs

Cf. A255346, A321503 .. A321506 (analog for k = 2, ..., 6 prime divisors).
Cf. A321502, A321493 .. A321497 (m and m+1 have at least but not both exactly k = 2, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 both have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A002110.

Programs

  • Mathematica
    Select[Range[36000000], PrimeNu[#] > 6 && PrimeNu[# + 1] > 6 &]
  • PARI
    is(n)=omega(n)>6&&omega(n+1)>6
    A321489=List();for(n=965*10^6,1.8e9,is(n)&&listput(A321489,n))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 29 2018

A321502 Numbers m such that m and m+1 have at least 2, but m or m+1 has at least 3 prime divisors.

Original entry on oeis.org

65, 69, 77, 84, 90, 104, 105, 110, 114, 119, 129, 132, 140, 153, 154, 155, 164, 165, 170, 174, 182, 185, 186, 189, 194, 195, 203, 204, 209, 219, 220, 221, 230, 231, 234, 237, 245, 246, 252, 254, 258, 259, 260, 264, 265, 266, 272, 273, 275, 279, 284, 285, 286, 290, 294, 299, 300, 305
Offset: 1

Views

Author

M. F. Hasler, Nov 27 2018

Keywords

Comments

Since m and m+1 cannot have a common factor, m(m+1) has at least 2+3 prime divisors (= distinct prime factors), whence m+1 > sqrt(primorial(5)) ~ 48. It turns out that a(1)*(a(1)+1) = 2*3*5*11*13, i.e., the prime factor 7 is not present.

Crossrefs

Cf. A321493, A321494, A321495, A321496, A321497 (analog for k = 3, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A255346, A321503 .. A321506, A321489 (m and m+1 have at least 2, ..., 7 prime divisors).

Programs

  • PARI
    select( is_A321502(n)=vecmax(n=[omega(n), omega(n+1)])>2&&vecmin(n)>1, [1..500])

Formula

Equals A255346 \ A074851.

A376163 Positions of adjacent non-prime-powers (inclusive, so 1 is a prime-power) differing by 1.

Original entry on oeis.org

4, 7, 8, 14, 15, 16, 18, 19, 22, 23, 26, 27, 29, 30, 31, 32, 35, 37, 39, 40, 43, 44, 45, 46, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 66, 67, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2024

Keywords

Examples

			The non-prime-powers (inclusive) are 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ... which increase by 1 after positions 4, 7, 8, ...
		

Crossrefs

For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
The exclusive version is a(n) - 1 = A375713.
Positions of 1's in A375735.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    ce=Select[Range[2,100],!PrimePowerQ[#]&];
    Select[Range[Length[ce]-1],ce[[#+1]]==ce[[#]]+1&]

A255349 Numbers n such that n(n+1) is divisible by some m(m+1) with none of {n, n+1} divisible by any of {m, m+1}.

Original entry on oeis.org

20, 35, 77, 84, 98, 99, 104, 119, 132, 153, 174, 175, 186, 189, 195, 216, 224, 230, 231, 245, 246, 260, 272, 279, 285, 350, 351, 363, 374, 384, 399, 425, 429, 440, 455, 459, 494, 527, 539, 551, 560, 575, 594, 608, 609, 615, 620, 644, 645, 650, 665, 696, 714, 730, 735, 759, 779, 780
Offset: 1

Views

Author

M. F. Hasler, Feb 21 2015

Keywords

Comments

A subsequence of A255346, see there for further information.

Examples

			a(1)=20 since 20*21=420 is divisible by 14*15=210 and none of {20, 21} is divisible by any of {14, 15}.
a(2)=35 since 35*36 = 1260 is divisible by 14*15 = 210 (and also by 20*21 = 420).
69 is not in the sequence although 69*70 = 4830 is divisible by 14*15 = 210, because 14 divides 70.
		

Crossrefs

Cf. A074851.

Programs

  • PARI
    is(n)={omega(n)>=2&&omega(n+1)>=2&&fordiv(n*(n+1),x,x>=n&&return;n*(n+1)%(x*(x+1))&&next;n%x||next;(n+1)%x||next;n%(x+1)||next;(n+1)%(x+1)&&return(1))}
Previous Showing 21-28 of 28 results.