A257618
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 8*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 40, 4, 8, 472, 472, 8, 16, 4928, 16992, 4928, 16, 32, 49824, 433984, 433984, 49824, 32, 64, 499584, 9505728, 22567168, 9505728, 499584, 64, 128, 4999040, 192085632, 909941120, 909941120, 192085632, 4999040, 128
Offset: 0
Triangle begins as:
1;
2, 2;
4, 40, 4;
8, 472, 472, 8;
16, 4928, 16992, 4928, 16;
32, 49824, 433984, 433984, 49824, 32;
64, 499584, 9505728, 22567168, 9505728, 499584, 64;
128, 4999040, 192085632, 909941120, 909941120, 192085632, 4999040, 128;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,8,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
-
def T(n,k,a,b): # A257618
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,8,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
A257621
Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 4*n + 3.
Original entry on oeis.org
1, 3, 3, 9, 42, 9, 27, 393, 393, 27, 81, 3156, 8646, 3156, 81, 243, 23631, 142446, 142446, 23631, 243, 729, 171006, 2015895, 4273380, 2015895, 171006, 729, 2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187, 6561, 8584872, 320039388, 2136524184, 3891302790, 2136524184, 320039388, 8584872, 6561
Offset: 0
Array t(n,k) begins as:
1, 3, 9, 27, 81, ...;
3, 42, 393, 3156, 23631, ...;
9, 393, 8646, 142446, 2015895, ...;
27, 3156, 142446, 4273380, 102402705, ...;
81, 23631, 2015895, 102402705, 3891302790, ...;
243, 171006, 26107983, 2136524184, 123074809242, ...;
729, 1216725, 320039388, 40688926236, 3437022383970, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 42, 9;
27, 393, 393, 27;
81, 3156, 8646, 3156, 81;
243, 23631, 142446, 142446, 23631, 243;
729, 171006, 2015895, 4273380, 2015895, 171006, 729;
2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187;
Similar sequences listed in
A256890.
-
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n,k,4,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257621(n,k): return t(n-k,k,4,3)
flatten([[A257621(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022
A257623
Triangle read by rows: T(n,k) = t(n-k, k), where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 5*n + 3.
Original entry on oeis.org
1, 3, 3, 9, 48, 9, 27, 501, 501, 27, 81, 4494, 13026, 4494, 81, 243, 37815, 250230, 250230, 37815, 243, 729, 309324, 4122735, 9008280, 4122735, 309324, 729, 2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187
Offset: 0
Array, t(n,k), begins as:
1, 3, 9, 27, 81, ... A000244;
3, 48, 501, 4494, 37815, ...;
9, 501, 13026, 250230, 4122735, ...;
27, 4494, 250230, 9008280, 256971945, ...;
81, 37815, 4122735, 256971945, 11820709470, ...;
243, 309324, 62256627, 6368680566, 450199373658, ...;
729, 2498649, 891791568, 144065371932, 15108742867890, ...;
Triangle, T(n,k), begins as:
1;
3, 3;
9, 48, 9;
27, 501, 501, 27;
81, 4494, 13026, 4494, 81;
243, 37815, 250230, 250230, 37815, 243;
729, 309324, 4122735, 9008280, 4122735, 309324, 729;
2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187;
Similar sequences listed in
A256890.
-
t[n_, k_, p_, q_]:= t[n, k, p, q]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+ q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k,k,p,q];
Table[T[n,k,5,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 27 2022 *)
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257623(n,k): return t(n-k,k,5,3)
flatten([[A257623(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 27 2022
A257625
Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 6*n + 3.
Original entry on oeis.org
1, 3, 3, 9, 54, 9, 27, 621, 621, 27, 81, 6156, 18630, 6156, 81, 243, 57591, 408726, 408726, 57591, 243, 729, 526338, 7685847, 17166492, 7685847, 526338, 729, 2187, 4765473, 132656859, 568014201, 568014201, 132656859, 4765473, 2187
Offset: 0
Array t(n,k) begins as:
1, 3, 9, 27, 81, ...;
3, 54, 621, 6156, 57591, ...;
9, 621, 18630, 408726, 7685847, ...;
27, 6156, 408726, 17166492, 568014201, ...;
81, 57591, 7685847, 568014201, 30672766854, ...;
243, 526338, 132656859, 16305974568, 1366261865802, ...;
729, 4765473, 2175706332, 427278012876, 53552912878818, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 54, 9;
27, 621, 621, 27;
81, 6156, 18630, 6156, 81;
243, 57591, 408726, 408726, 57591, 243;
729, 526338, 7685847, 17166492, 7685847, 526338, 729;
2187, 4765473, 132656859, 568014201, 568014201, 132656859, 4765473, 2187;
See similar sequences listed in
A256890.
-
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n,k,6,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257625(n,k): return t(n-k,k,6,3)
flatten([[A257625(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022
A257627
Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(x) = 7*x + 3.
Original entry on oeis.org
1, 3, 3, 9, 60, 9, 27, 753, 753, 27, 81, 8178, 25602, 8178, 81, 243, 84291, 631506, 631506, 84291, 243, 729, 852144, 13348623, 30312288, 13348623, 852144, 729, 2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187
Offset: 0
Array t(n, k) begins as:
1, 3, 9, 27, 81, ... A000244;
3, 60, 753, 8178, 84291, ...;
9, 753, 25602, 631506, 13348623, ...;
27, 8178, 631506, 30312288, 1141302225, ...;
81, 84291, 13348623, 1141302225, 70760737950, ...;
243, 852144, 259308063, 37244959794, 3608891348622, ...;
729, 8554245, 4793178096, 1109572049376, 161806374029202, ...;
Triangle, T(n, k) begins as:
1;
3, 3;
9, 60, 9;
27, 753, 753, 27;
81, 8178, 25602, 8178, 81;
243, 84291, 631506, 631506, 84291, 243;
729, 852144, 13348623, 30312288, 13348623, 852144, 729;
2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187;
See similar sequences listed in
A256890.
-
f[n_]:= 7*n+3;
t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]];
T[n_, k_]= t[n-k, k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
def f(n): return 7*n+3
@CachedFunction
def t(n,k):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return f(k)*t(n-1, k) + f(n)*t(n, k-1)
def A257627(n,k): return t(n-k,k)
flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022
A257622
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 4.
Original entry on oeis.org
1, 4, 4, 16, 56, 16, 64, 552, 552, 64, 256, 4696, 11040, 4696, 256, 1024, 36968, 171448, 171448, 36968, 1024, 4096, 278232, 2305968, 4457648, 2305968, 278232, 4096, 16384, 2037736, 28346088, 94844912, 94844912, 28346088, 2037736, 16384
Offset: 0
Triangle begins as:
1;
4, 4;
16, 56, 16;
64, 552, 552, 64;
256, 4696, 11040, 4696, 256;
1024, 36968, 171448, 171448, 36968, 1024;
4096, 278232, 2305968, 4457648, 2305968, 278232, 4096;
16384, 2037736, 28346088, 94844912, 94844912, 28346088, 2037736, 16384;
See similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,3,4], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257622
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,3,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A257624
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 5.
Original entry on oeis.org
1, 5, 5, 25, 80, 25, 125, 915, 915, 125, 625, 9070, 20130, 9070, 625, 3125, 83185, 348410, 348410, 83185, 3125, 15625, 727980, 5246655, 9755480, 5246655, 727980, 15625, 78125, 6183215, 72272805, 225769855, 225769855, 72272805, 6183215, 78125
Offset: 0
Triangle begins as:
1;
5, 5;
25, 80, 25;
125, 915, 915, 125;
625, 9070, 20130, 9070, 625;
3125, 83185, 348410, 348410, 83185, 3125;
15625, 727980, 5246655, 9755480, 5246655, 727980, 15625;
78125, 6183215, 72272805, 225769855, 225769855, 72272805, 6183215, 78125;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,3,5], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257624
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,3,5) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A257613
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 4.
Original entry on oeis.org
1, 4, 4, 16, 48, 16, 64, 416, 416, 64, 256, 3136, 6656, 3136, 256, 1024, 21888, 84608, 84608, 21888, 1024, 4096, 145664, 939520, 1692160, 939520, 145664, 4096, 16384, 939520, 9555456, 28195840, 28195840, 9555456, 939520, 16384, 65536, 5932032, 91475968, 415734784, 676700160, 415734784, 91475968, 5932032, 65536
Offset: 0
Triangle begins as:
1;
4, 4;
16, 48, 16;
64, 416, 416, 64;
256, 3136, 6656, 3136, 256;
1024, 21888, 84608, 84608, 21888, 1024;
4096, 145664, 939520, 1692160, 939520, 145664, 4096;
16384, 939520, 9555456, 28195840, 28195840, 9555456, 939520, 16384;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,2,4], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
f(x) = 2*x + 4;
T(n, k) = t(n-k, k);
t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
-
def T(n,k,a,b): # A257613
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,2,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A257615
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 5.
Original entry on oeis.org
1, 5, 5, 25, 70, 25, 125, 715, 715, 125, 625, 6380, 12870, 6380, 625, 3125, 52785, 186010, 186010, 52785, 3125, 15625, 416370, 2360295, 4092220, 2360295, 416370, 15625, 78125, 3180215, 27488205, 75698255, 75698255, 27488205, 3180215, 78125
Offset: 0
Triangle begins as:
1;
5, 5;
25, 70, 25;
125, 715, 715, 125;
625, 6380, 12870, 6380, 625;
3125, 52785, 186010, 186010, 52785, 3125;
15625, 416370, 2360295, 4092220, 2360295, 416370, 15625;
78125, 3180215, 27488205, 75698255, 75698255, 27488205, 3180215, 78125;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,2,5], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
-
def T(n,k,a,b): # A257610
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,2,5) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
A257606
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 4.
Original entry on oeis.org
1, 4, 4, 16, 40, 16, 64, 296, 296, 64, 256, 1928, 3552, 1928, 256, 1024, 11688, 34808, 34808, 11688, 1024, 4096, 67656, 302352, 487312, 302352, 67656, 4096, 16384, 379240, 2423016, 5830000, 5830000, 2423016, 379240, 16384, 65536, 2076424, 18330496, 62617144, 93280000, 62617144, 18330496, 2076424, 65536
Offset: 0
Triangle begins as:
1;
4, 4;
16, 40, 16;
64, 296, 296, 64;
256, 1928, 3552, 1928, 256;
1024, 11688, 34808, 34808, 11688, 1024;
4096, 67656, 302352, 487312, 302352, 67656, 4096;
16384, 379240, 2423016, 5830000, 5830000, 2423016, 379240, 16384;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,1,4], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
-
def T(n,k,a,b): # A257606
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,1,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022