A340605
Heinz numbers of integer partitions of even positive rank.
Original entry on oeis.org
5, 11, 14, 17, 21, 23, 26, 31, 35, 38, 39, 41, 44, 47, 49, 57, 58, 59, 65, 66, 67, 68, 73, 74, 83, 86, 87, 91, 92, 95, 97, 99, 102, 103, 104, 106, 109, 110, 111, 122, 124, 127, 129, 133, 137, 138, 142, 143, 145, 149, 152, 153, 154, 156, 157, 158, 159, 164, 165
Offset: 1
The sequence of partitions with their Heinz numbers begins:
5: (3) 57: (8,2) 97: (25)
11: (5) 58: (10,1) 99: (5,2,2)
14: (4,1) 59: (17) 102: (7,2,1)
17: (7) 65: (6,3) 103: (27)
21: (4,2) 66: (5,2,1) 104: (6,1,1,1)
23: (9) 67: (19) 106: (16,1)
26: (6,1) 68: (7,1,1) 109: (29)
31: (11) 73: (21) 110: (5,3,1)
35: (4,3) 74: (12,1) 111: (12,2)
38: (8,1) 83: (23) 122: (18,1)
39: (6,2) 86: (14,1) 124: (11,1,1)
41: (13) 87: (10,2) 127: (31)
44: (5,1,1) 91: (6,4) 129: (14,2)
47: (15) 92: (9,1,1) 133: (8,4)
49: (4,4) 95: (8,3) 137: (33)
Note: Heinz numbers are given in parentheses below.
These partitions are counted by
A101708.
A072233 counts partitions by sum and length.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
- Even -
A339846 counts factorizations of even length.
Cf.
A006141,
A024430,
A056239,
A112798,
A340387,
A340598,
A340600,
A340608,
A340609,
A340610,
A340653.
A340603
Heinz numbers of integer partitions of odd rank.
Original entry on oeis.org
3, 4, 7, 10, 12, 13, 15, 16, 18, 19, 22, 25, 27, 28, 29, 33, 34, 37, 40, 42, 43, 46, 48, 51, 52, 53, 55, 60, 61, 62, 63, 64, 69, 70, 71, 72, 76, 77, 78, 79, 82, 85, 88, 89, 90, 93, 94, 98, 100, 101, 105, 107, 108, 112, 113, 114, 115, 116, 117, 118, 119, 121
Offset: 1
The sequence of partitions with their Heinz numbers begins:
3: (2) 33: (5,2) 63: (4,2,2)
4: (1,1) 34: (7,1) 64: (1,1,1,1,1,1)
7: (4) 37: (12) 69: (9,2)
10: (3,1) 40: (3,1,1,1) 70: (4,3,1)
12: (2,1,1) 42: (4,2,1) 71: (20)
13: (6) 43: (14) 72: (2,2,1,1,1)
15: (3,2) 46: (9,1) 76: (8,1,1)
16: (1,1,1,1) 48: (2,1,1,1,1) 77: (5,4)
18: (2,2,1) 51: (7,2) 78: (6,2,1)
19: (8) 52: (6,1,1) 79: (22)
22: (5,1) 53: (16) 82: (13,1)
25: (3,3) 55: (5,3) 85: (7,3)
27: (2,2,2) 60: (3,2,1,1) 88: (5,1,1,1)
28: (4,1,1) 61: (18) 89: (24)
29: (10) 62: (11,1) 90: (3,2,2,1)
Note: Heinz numbers are given in parentheses below.
These partitions are counted by
A340692.
The case of positive rank is
A340604.
- Rank -
A001222 gives number of prime indices.
A257541 gives the rank of the partition with Heinz number n.
A340653 counts balanced factorizations.
- Odd -
A339890 counts factorizations of odd length.
A340102 counts odd-length factorizations into odd factors.
Cf.
A001221,
A006141,
A056239,
A112798,
A168659,
A200750,
A316413,
A325134,
A340608,
A340609,
A340610.
A340787
Heinz numbers of integer partitions of positive rank.
Original entry on oeis.org
3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
3: (2) 28: (4,1,1) 49: (4,4) 69: (9,2)
5: (3) 29: (10) 51: (7,2) 70: (4,3,1)
7: (4) 31: (11) 52: (6,1,1) 71: (20)
10: (3,1) 33: (5,2) 53: (16) 73: (21)
11: (5) 34: (7,1) 55: (5,3) 74: (12,1)
13: (6) 35: (4,3) 57: (8,2) 76: (8,1,1)
14: (4,1) 37: (12) 58: (10,1) 77: (5,4)
15: (3,2) 38: (8,1) 59: (17) 78: (6,2,1)
17: (7) 39: (6,2) 61: (18) 79: (22)
19: (8) 41: (13) 62: (11,1) 82: (13,1)
21: (4,2) 42: (4,2,1) 63: (4,2,2) 83: (23)
22: (5,1) 43: (14) 65: (6,3) 85: (7,3)
23: (9) 44: (5,1,1) 66: (5,2,1) 86: (14,1)
25: (3,3) 46: (9,1) 67: (19) 87: (10,2)
26: (6,1) 47: (15) 68: (7,1,1) 88: (5,1,1,1)
Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by
A064173.
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (
A340609).
A168659 = partitions whose length divides their greatest part (
A340610).
A200750 = partitions whose length and maximum are relatively prime.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
Cf.
A003114,
A006141,
A039900,
A056239,
A096401,
A112798,
A117409,
A316413,
A324517,
A325134,
A326845,
A340828.
A325232
Number of integer partitions (of any nonnegative integer) whose sum minus the lesser of their maximum part and their number of parts is n.
Original entry on oeis.org
2, 3, 6, 10, 18, 27, 44, 64, 97, 138, 200, 276, 390, 528, 724, 968, 1301, 1712, 2266, 2946, 3842, 4947, 6372, 8122, 10362, 13094, 16544, 20754, 26010, 32392, 40308, 49876, 61648, 75845, 93178, 114006, 139308, 169586, 206158, 249814, 302267, 364664, 439330
Offset: 0
The a(0) = 1 through a(4) = 18 partitions:
() (2) (3) (4) (5)
(1) (11) (22) (32) (33)
(21) (31) (41) (42)
(111) (221) (51)
(211) (321) (222)
(311) (411) (322)
(1111) (331)
(2111) (421)
(3111) (511)
(4111) (2211)
(3211)
(4211)
(5111)
(11111)
(21111)
(31111)
(41111)
(51111)
Number of times n appears in
A325224.
-
nn=30;
mindif[ptn_]:=If[ptn=={},0,Total[ptn]-Min[Length[ptn],Max[ptn]]];
allip=Array[IntegerPartitions,2*nn+2,0,Join];
Table[Length[Select[allip,mindif[#]==n&]],{n,0,nn}]
A340856
Squarefree numbers whose greatest prime index (A061395) is divisible by their number of prime factors (A001222).
Original entry on oeis.org
2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 47, 53, 57, 58, 59, 61, 65, 67, 71, 73, 74, 78, 79, 83, 86, 87, 89, 91, 95, 97, 101, 103, 106, 107, 109, 111, 113, 122, 127, 129, 130, 131, 133, 137, 138, 139, 142, 143, 145
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1} 31: {11} 71: {20}
3: {2} 35: {3,4} 73: {21}
5: {3} 37: {12} 74: {1,12}
6: {1,2} 38: {1,8} 78: {1,2,6}
7: {4} 39: {2,6} 79: {22}
11: {5} 41: {13} 83: {23}
13: {6} 43: {14} 86: {1,14}
14: {1,4} 47: {15} 87: {2,10}
17: {7} 53: {16} 89: {24}
19: {8} 57: {2,8} 91: {4,6}
21: {2,4} 58: {1,10} 95: {3,8}
23: {9} 59: {17} 97: {25}
26: {1,6} 61: {18} 101: {26}
29: {10} 65: {3,6} 103: {27}
30: {1,2,3} 67: {19} 106: {1,16}
Note: Heinz number sequences are given in parentheses below.
The case of equality, and the reciprocal version, are both
A002110.
These are the Heinz numbers of partitions counted by
A340828.
A006141 counts partitions whose length equals their minimum (
A324522).
A061395 selects the maximum prime index.
A112798 lists the prime indices of each positive integer.
A257541 gives the rank of the partition with Heinz number n.
A340830 counts strict partitions whose parts are multiples of the length.
-
Select[Range[2,100],SquareFreeQ[#]&&Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]
A325229
Heinz numbers of integer partitions such that lesser of the maximum part and the number of parts is 2.
Original entry on oeis.org
6, 9, 10, 12, 14, 15, 18, 21, 22, 24, 25, 26, 27, 33, 34, 35, 36, 38, 39, 46, 48, 49, 51, 54, 55, 57, 58, 62, 65, 69, 72, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 108, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 144, 145, 146
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
25: {3,3}
26: {1,6}
27: {2,2,2}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
39: {2,6}
46: {1,9}
Cf.
A056239,
A061395,
A093641,
A112798,
A252464,
A257541,
A263297,
A265283,
A325224,
A325225,
A325227,
A325230,
A325232.
A325230
Numbers of the form p^k * q, p and q prime, p > q, k > 0.
Original entry on oeis.org
6, 10, 14, 15, 18, 21, 22, 26, 33, 34, 35, 38, 39, 46, 50, 51, 54, 55, 57, 58, 62, 65, 69, 74, 75, 77, 82, 85, 86, 87, 91, 93, 94, 95, 98, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 147, 155, 158, 159, 161, 162, 166, 177, 178
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2}
10: {1,3}
14: {1,4}
15: {2,3}
18: {1,2,2}
21: {2,4}
22: {1,5}
26: {1,6}
33: {2,5}
34: {1,7}
35: {3,4}
38: {1,8}
39: {2,6}
46: {1,9}
50: {1,3,3}
51: {2,7}
54: {1,2,2,2}
55: {3,5}
57: {2,8}
58: {1,10}
-
filter:= proc(n) local F;
F:= sort(ifactors(n)[2],(a,b)-> a[1]Robert Israel, Apr 14 2019
-
Select[Range[100],PrimeOmega[#/Power@@FactorInteger[#][[-1]]]==1&]
-
from sympy import factorint
A325230_list = [n for n, m in ((n, factorint(n)) for n in range(2,10**6)) if len(m) == 2 and m[min(m)] == 1] # Chai Wah Wu, Apr 16 2019
A325231
Numbers of the form 2 * p or 3 * 2^k, p prime, k > 1.
Original entry on oeis.org
6, 10, 12, 14, 22, 24, 26, 34, 38, 46, 48, 58, 62, 74, 82, 86, 94, 96, 106, 118, 122, 134, 142, 146, 158, 166, 178, 192, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 384, 386, 394, 398, 422, 446, 454, 458, 466
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
34: {1,7}
38: {1,8}
46: {1,9}
48: {1,1,1,1,2}
58: {1,10}
62: {1,11}
74: {1,12}
82: {1,13}
86: {1,14}
94: {1,15}
96: {1,1,1,1,1,2}
106: {1,16}
118: {1,17}
Cf.
A001222,
A056239,
A060687,
A061395,
A093641,
A112798,
A174090,
A257541,
A265283,
A325224,
A325225,
A325227,
A325232.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Total[primeMS[#]]-Max[Length[primeMS[#]],Max[primeMS[#]]]==1&]
-
from sympy import isprime
A325231_list = [n for n in range(6,10**6) if ((not n % 2) and isprime(n//2)) or (bin(n)[2:4] == '11' and bin(n).count('1') == 2)] # Chai Wah Wu, Apr 16 2019
A325234
Heinz numbers of integer partitions with Dyson rank -1.
Original entry on oeis.org
4, 12, 18, 27, 40, 60, 90, 100, 112, 135, 150, 168, 225, 250, 252, 280, 352, 375, 378, 392, 420, 528, 567, 588, 625, 630, 700, 792, 832, 880, 882, 945, 980, 1050, 1188, 1232, 1248, 1320, 1323, 1372, 1470, 1575, 1750, 1782, 1848, 1872, 1936, 1980, 2058, 2080
Offset: 1
The sequence of terms together with their prime indices begins:
4: {1,1}
12: {1,1,2}
18: {1,2,2}
27: {2,2,2}
40: {1,1,1,3}
60: {1,1,2,3}
90: {1,2,2,3}
100: {1,1,3,3}
112: {1,1,1,1,4}
135: {2,2,2,3}
150: {1,2,3,3}
168: {1,1,1,2,4}
225: {2,2,3,3}
250: {1,3,3,3}
252: {1,1,2,2,4}
280: {1,1,1,3,4}
352: {1,1,1,1,1,5}
375: {2,3,3,3}
378: {1,2,2,2,4}
392: {1,1,1,4,4}
Cf.
A001222,
A047993,
A056239,
A061395,
A063995,
A101198,
A106529,
A112798,
A257990,
A263297,
A325225,
A325233,
A325235.
A325235
Heinz numbers of integer partitions with Dyson rank 1 or -1.
Original entry on oeis.org
3, 4, 10, 12, 15, 18, 25, 27, 28, 40, 42, 60, 63, 70, 88, 90, 98, 100, 105, 112, 132, 135, 147, 150, 168, 175, 198, 208, 220, 225, 245, 250, 252, 280, 297, 308, 312, 330, 343, 352, 375, 378, 392, 420, 462, 468, 484, 495, 520, 528, 544, 550, 567, 588, 625, 630
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2}
4: {1,1}
10: {1,3}
12: {1,1,2}
15: {2,3}
18: {1,2,2}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
40: {1,1,1,3}
42: {1,2,4}
60: {1,1,2,3}
63: {2,2,4}
70: {1,3,4}
88: {1,1,1,5}
90: {1,2,2,3}
98: {1,4,4}
100: {1,1,3,3}
105: {2,3,4}
112: {1,1,1,1,4}
Positions of 1's and -1's in
A257541.
Cf.
A001222,
A047993,
A056239,
A061395,
A063995,
A101198,
A106529,
A112798,
A257990,
A263297,
A325225,
A325233,
A325234.
Comments