cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 84 results. Next

A351980 Heinz numbers of integer partitions with as many even parts as odd conjugate parts and as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 6, 84, 126, 140, 210, 490, 525, 686, 875, 1404, 1456, 2106, 2184, 2288, 2340, 3432, 3510, 5460, 6760, 7644, 8190, 8580, 8775, 9100, 9464, 11466, 12012, 12740, 12870, 13650, 14300, 14625, 15808, 18018, 18468, 19110, 19152, 20020, 20672, 21450, 22308, 23712
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: ()
     6: (2,1)
    84: (4,2,1,1)
   126: (4,2,2,1)
   140: (4,3,1,1)
   210: (4,3,2,1)
   490: (4,4,3,1)
   525: (4,3,3,2)
   686: (4,4,4,1)
   875: (4,3,3,3)
  1404: (6,2,2,2,1,1)
  1456: (6,4,1,1,1,1)
  2106: (6,2,2,2,2,1)
  2184: (6,4,2,1,1,1)
  2288: (6,5,1,1,1,1)
  2340: (6,3,2,2,1,1)
		

Crossrefs

The first condition alone is A349157, counted by A277579.
The second condition alone is A350943, counted by A277579.
There are two other possible double-pairings of statistics:
- A350946, counted by A351977.
- A350949, counted by A351976.
The case of all four statistics equal is A350947, counted by A351978.
These partitions are counted by A351981.
Partitions with as many even as odd parts:
- counted by A045931
- strict case counted by A239241
- ranked by A325698
- conjugate ranked by A350848
- strict conjugate case counted by A352129
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

Formula

Closed under A122111 (conjugation).
Intersection of A349157 and A350943.
A257992(a(n)) = A344616(a(n)).
A257991(a(n)) = A350847(a(n)).

A351981 Number of integer partitions of n with as many even parts as odd conjugate parts, and as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 2, 2, 4, 2, 1, 6, 8, 7, 9, 13, 14, 15, 19, 21, 23, 32, 40, 41, 45, 66, 81, 80, 96, 124, 139, 160, 194, 221, 246, 303, 360, 390, 446, 546, 634, 703, 810, 971, 1115, 1250, 1448, 1685, 1910
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) partitions for selected n:
n = 3    9      15       18       19       20         21
   -----------------------------------------------------------
    21   4221   622221   633222   633322   644321     643332
         4311   632211   643221   643321   653321     654321
                642111   643311   644221   654221     665211
                651111   644211   644311   654311     82222221
                         653211   653221   82222211   83222211
                         663111   653311   84221111   84222111
                                  654211   86111111   85221111
                                  664111              86211111
                                                      87111111
For example, the partition (6,6,3,1,1,1) has conjugate (6,3,3,2,2,2), and has 2 even, 4 odd, 4 even conjugate, and 2 odd conjugate parts, so is counted under a(18).
		

Crossrefs

The first condition alone is A277579, ranked by A349157.
The second condition alone is A277579, ranked by A350943.
These partitions are ranked by A351980.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931: # of even parts = # of odd parts:
- conjugate also A045931
- ordered A098123
- strict A239241
- ranked by A325698
- conjugate ranked by A350848
- A277103: # of odd parts = # of odd conjugate parts, ranked by A350944.
- A350948: # of even parts = # of even conjugate parts, ranked by A350945.
There are two other double-pairings of statistics:
- A351976, ranked by A350949.
- A351977, ranked by A350946.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

A366531 Sum of even prime indices of n.

Original entry on oeis.org

0, 0, 2, 0, 0, 2, 4, 0, 4, 0, 0, 2, 6, 4, 2, 0, 0, 4, 8, 0, 6, 0, 0, 2, 0, 6, 6, 4, 10, 2, 0, 0, 2, 0, 4, 4, 12, 8, 8, 0, 0, 6, 14, 0, 4, 0, 0, 2, 8, 0, 2, 6, 16, 6, 0, 4, 10, 10, 0, 2, 18, 0, 8, 0, 6, 2, 0, 0, 2, 4, 20, 4, 0, 12, 2, 8, 4, 8, 22, 0, 8, 0, 0, 6
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = 2+2 = 4.
		

Crossrefs

Zeros are A066208, counted by A000009.
The triangle for the odd version is A113685, without zeros A365067.
The triangle for this statistic is A113686, without zeros A174713.
The odd version is A366528.
The halved version is A366533.
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A239261 counts partitions with sum of odd parts = sum of even parts.
A257991 counts odd prime indices, even A257992.
A346697 adds up odd-indexed prime indices, even-indexed A346698.
A366322 lists numbers with not all prime indices even, counted by A086543.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n], {p_?(EvenQ@*PrimePi),k_}:>PrimePi[p]*k]],{n,100}]

Formula

a(n) = A056239(n) - A366528(n).

A366533 Sum of even prime indices of n divided by 2.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 2, 0, 0, 1, 3, 2, 1, 0, 0, 2, 4, 0, 3, 0, 0, 1, 0, 3, 3, 2, 5, 1, 0, 0, 1, 0, 2, 2, 6, 4, 4, 0, 0, 3, 7, 0, 2, 0, 0, 1, 4, 0, 1, 3, 8, 3, 0, 2, 5, 5, 0, 1, 9, 0, 4, 0, 3, 1, 0, 0, 1, 2, 10, 2, 0, 6, 1, 4, 2, 4, 11, 0, 4, 0, 0, 3, 0, 7
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = (2+2)/2 = 2.
		

Crossrefs

Zeros are A066208, counted by A000009.
The triangle for this statistic (without zeros) is A174713.
The un-halved odd version is A366528.
The un-halved version is A366531.
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A113685 counts partitions by sum of odd parts, even version A113686.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A257991 counts odd prime indices, even A257992.
A346697 adds up odd-indexed prime indices, even-indexed A346698.
A365067 counts partitions by sum of odd parts (without zeros).
A366322 lists numbers with not all prime indices even, counted by A086543.

Programs

  • Maple
    f:= proc(n) local F,t;
      F:= map(t -> [numtheory:-Pi(t[1]),t[2]], ifactors(n)[2]);
      add(`if`(t[1]::even, t[1]*t[2]/2, 0), t=F)
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[Select[prix[n],EvenQ]]/2,{n,100}]

Formula

a(n) = A366531(n)/2.

A379312 Positive integers whose prime indices include a unique 1 or prime number.

Original entry on oeis.org

2, 3, 5, 11, 14, 17, 21, 26, 31, 35, 38, 39, 41, 46, 57, 58, 59, 65, 67, 69, 74, 77, 83, 86, 87, 94, 95, 98, 106, 109, 111, 115, 119, 122, 127, 129, 141, 142, 143, 145, 146, 147, 157, 158, 159, 178, 179, 182, 183, 185, 191, 194, 202, 206, 209, 211, 213, 214
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   14: {1,4}
   17: {7}
   21: {2,4}
   26: {1,6}
   31: {11}
   35: {3,4}
   38: {1,8}
   39: {2,6}
   41: {13}
   46: {1,9}
   57: {2,8}
   58: {1,10}
   59: {17}
   65: {3,6}
   67: {19}
   69: {2,9}
   74: {1,12}
   77: {4,5}
		

Crossrefs

These "old" primes are listed by A008578.
For no composite parts we have A302540, counted by A034891 (strict A036497).
For all composite parts we have A320629, counted by A023895 (strict A204389).
For a unique prime part we have A331915, counted by A379304 (strict A379305).
Positions of ones in A379311, see A379313.
Partitions of this type are counted by A379314, strict A379315.
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A080339 is the characteristic function for the old prime numbers.
A376682 gives k-th differences of old prime numbers, see A030016, A075526.
Other counts of prime indices:
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],#==1||PrimeQ[#]&]]==1&]

A340932 Numbers whose least prime index is odd. Heinz numbers of integer partitions whose last part is odd.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 54, 55, 56, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 80, 82, 83, 84, 85, 86, 88, 90, 92, 94, 95, 96, 97
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. 1 has no prime indices so is not included.

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}           24: {1,1,1,2}       46: {1,9}
      4: {1,1}         25: {3,3}           47: {15}
      5: {3}           26: {1,6}           48: {1,1,1,1,2}
      6: {1,2}         28: {1,1,4}         50: {1,3,3}
      8: {1,1,1}       30: {1,2,3}         52: {1,1,6}
     10: {1,3}         31: {11}            54: {1,2,2,2}
     11: {5}           32: {1,1,1,1,1}     55: {3,5}
     12: {1,1,2}       34: {1,7}           56: {1,1,1,4}
     14: {1,4}         35: {3,4}           58: {1,10}
     16: {1,1,1,1}     36: {1,1,2,2}       59: {17}
     17: {7}           38: {1,8}           60: {1,1,2,3}
     18: {1,2,2}       40: {1,1,1,3}       62: {1,11}
     20: {1,1,3}       41: {13}            64: {1,1,1,1,1,1}
     22: {1,5}         42: {1,2,4}         65: {3,6}
     23: {9}           44: {1,1,5}         66: {1,2,5}
		

Crossrefs

These partitions are counted by A026804.
The case where all prime indices are odd is A066208.
Looking at greatest prime index instead of least gives A244991.
Every term x is a product of A257991(x) elements of A341446.
The complement is {1} \/ A340933, counted by A026805.
A001222 counts prime factors.
A005408 lists odd numbers.
A027193 counts odd-length partitions, ranked by A026424.
A031368 lists odd-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058695 counts partitions of odd numbers, ranked by A300063.
A061395 selects greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Select[Range[100],OddQ[PrimePi[FactorInteger[#][[1,1]]]]&]

Formula

A055396(a(n)) belongs to A005408.
Closed under multiplication.

A379316 Positive integers whose prime indices include a unique squarefree number.

Original entry on oeis.org

2, 3, 5, 11, 13, 14, 17, 21, 29, 31, 35, 38, 41, 43, 46, 47, 57, 59, 67, 69, 73, 74, 77, 79, 83, 91, 95, 98, 101, 106, 109, 111, 113, 115, 119, 122, 127, 137, 139, 142, 147, 149, 157, 159, 163, 167, 178, 179, 181, 183, 185, 191, 194, 199, 203, 206, 209, 211
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   21: {2,4}
   29: {10}
   31: {11}
   35: {3,4}
   38: {1,8}
   41: {13}
   43: {14}
   46: {1,9}
		

Crossrefs

For all squarefree parts we have A302478, zeros of A379310.
Positions of 1 in A379306.
For no squarefree parts we have A379307, counted by A114374, strict A256012.
Partitions of this type are counted by A379308, strict A379309.
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 prime or 1, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==1&]

A324966 Number of distinct odd prime indices of n.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If x and y are coprime then a(x*y) = a(x)+a(y). - Robert Israel, Mar 24 2019

Examples

			180180 has prime indices {1,1,2,2,3,4,5,6}, so a(180180) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) nops(select(type,map(numtheory:-pi,numtheory:-factorset(n)),odd)) end proc:
    map(f, [$1..100]); # Robert Israel, Mar 24 2019
  • Mathematica
    Table[Count[If[n==1,{},FactorInteger[n]],{?(OddQ[PrimePi[#]]&),}],{n,100}]
  • PARI
    a(n) = my(f=factor(n)[,1]); sum(k=1, #f, primepi(f[k]) % 2); \\ Michel Marcus, Mar 22 2019

Formula

a(n) = A001221(n) - A324967(n). - Robert Israel, Mar 24 2019
G.f.: Sum_{k>=1} x^prime(2*k-1) / (1 - x^prime(2*k-1)). - Ilya Gutkovskiy, Feb 12 2020
Additive with a(p^e) = 1 if primepi(p) is odd and 0 otherwise. - Amiram Eldar, Oct 06 2023

A349158 Heinz numbers of integer partitions with exactly one odd part.

Original entry on oeis.org

2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with exactly one odd prime index. These are also partitions whose conjugate partition has alternating sum equal to 1.
Numbers that are product of a term of A031368 and a term of A066207. - Antti Karttunen, Nov 13 2021

Examples

			The terms and corresponding partitions begin:
      2: (1)         42: (4,2,1)       86: (14,1)
      5: (3)         45: (3,2,2)       93: (11,2)
      6: (2,1)       47: (15)          95: (8,3)
     11: (5)         51: (7,2)         97: (25)
     14: (4,1)       54: (2,2,2,1)     98: (4,4,1)
     15: (3,2)       58: (10,1)        99: (5,2,2)
     17: (7)         59: (17)         103: (27)
     18: (2,2,1)     65: (6,3)        105: (4,3,2)
     23: (9)         67: (19)         106: (16,1)
     26: (6,1)       69: (9,2)        109: (29)
     31: (11)        73: (21)         114: (8,2,1)
     33: (5,2)       74: (12,1)       119: (7,4)
     35: (4,3)       77: (5,4)        122: (18,1)
     38: (8,1)       78: (6,2,1)      123: (13,2)
     41: (13)        83: (23)         126: (4,2,2,1)
		

Crossrefs

These partitions are counted by A000070 up to 0's.
Allowing no odd parts gives A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These are the positions of 1's in A257991.
The even prime indices are counted by A257992.
The conjugate partitions are ranked by A345958.
Allowing at most one odd part gives A349150, counted by A100824.
A047993 ranks balanced partitions, counted by A106529.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340604 ranks partitions of odd positive rank, counted by A101707.
A340932 ranks partitions whose least part is odd, counted by A026804.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?OddQ]==1&]

A345196 Number of integer partitions of n with reverse-alternating sum equal to the reverse-alternating sum of their conjugate.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 4, 4, 4, 8, 11, 11, 11, 20, 27, 29, 31, 48, 65, 70, 74, 109, 145, 160, 172, 238, 314, 345, 372, 500, 649, 721, 782, 1019, 1307, 1451, 1577, 2015, 2552, 2841, 3098, 3885, 4867, 5418, 5914, 7318, 9071, 10109, 11050
Offset: 0

Views

Author

Gus Wiseman, Jun 26 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. By conjugation, this is also (-1)^(r-1) times the number of odd parts, where r is the greatest part. So a(n) is the number of integer partitions of n of even rank with the same number of odd parts as their conjugate.

Examples

			The a(5) = 1 through a(12) = 11 partitions:
  (311)  (321)  (43)    (44)    (333)    (541)    (65)      (66)
                (2221)  (332)   (531)    (4321)   (4322)    (552)
                (4111)  (2222)  (32211)  (32221)  (4331)    (4332)
                        (4211)  (51111)  (52111)  (4421)    (4422)
                                                  (6311)    (4431)
                                                  (222221)  (6411)
                                                  (422111)  (33222)
                                                  (611111)  (53211)
                                                            (222222)
                                                            (422211)
                                                            (621111)
		

Crossrefs

The non-reverse version is A277103.
Comparing even parts to odd conjugate parts gives A277579.
Comparing signs only gives A340601.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],sats[#]==sats[conj[#]]&]],{n,0,15}]
Previous Showing 31-40 of 84 results. Next