A269161 Formula for Wolfram's Rule 86 cellular automaton: a(n) = 4n XOR (2n OR n).
0, 7, 14, 11, 28, 27, 22, 19, 56, 63, 54, 51, 44, 43, 38, 35, 112, 119, 126, 123, 108, 107, 102, 99, 88, 95, 86, 83, 76, 75, 70, 67, 224, 231, 238, 235, 252, 251, 246, 243, 216, 223, 214, 211, 204, 203, 198, 195, 176, 183, 190, 187, 172, 171, 166, 163, 152, 159, 150, 147, 140, 139, 134, 131, 448, 455, 462, 459
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
- Eric Weisstein's World of Mathematics, Rule 30
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Crossrefs
Programs
-
Mathematica
a[n_] := BitXor[4n, BitOr[2n, n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 23 2016 *)
-
Python
def A269161(n): return n<<2 ^ (n<<1 |n) # Chai Wah Wu, Jun 29 2022
-
Scheme
(define (A269161 n) (A003987bi (* 4 n) (A003986bi (* 2 n) n))) ;; Where A003986bi and A003987bi are implementation of dyadic functions giving bitwise-OR (A003986) and bitwise-XOR (A003987) of their arguments.
Comments