A270917
Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k^n).
Original entry on oeis.org
1, 1, 4, 35, 457, 12421, 678101, 69540142, 13730026114, 5551573311817, 4379029522335786, 6705866900012021577, 21038900445652125741759, 131183458646068931932668114, 1603688863449847489871671547959, 40294004792352613617780682256221711
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 16 2017
-
Table[SeriesCoefficient[Product[(1+x^k)^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
A324595
Number of colored integer partitions of 2n such that all colors from an n-set are used and parts differ by size or by color.
Original entry on oeis.org
1, 1, 5, 19, 85, 381, 1751, 8135, 38173, 180415, 857695, 4096830, 19645975, 94523729, 456079769, 2206005414, 10693086637, 51930129399, 252617434619, 1230714593340, 6003931991895, 29325290391416, 143393190367102, 701862880794183, 3438561265961263
Offset: 0
a(2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> add(b(2*n$2, n-i)*(-1)^i*binomial(n, i), i=0..n):
seq(a(n), n=0..25);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n+1),
(q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> g(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 29 2021
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k] Binomial[k, j]][n - i j], {j, 0, Min[k, n/i]}]]];
a[n_] := Sum[b[2n, 2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}];
a /@ Range[0, 25] (* Jean-François Alcover, May 06 2020, after Maple *)
Table[SeriesCoefficient[(-1 + QPochhammer[-1, Sqrt[x]]/2)^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jan 15 2024 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{2 + 2*s == QPochhammer[-1, Sqrt[r*s]], Sqrt[r]*Derivative[0, 1][QPochhammer][-1, Sqrt[r*s]] == 4*Sqrt[s]}, {r, 1/5}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 15 2024 *)
A296163
a(n) = [x^n] Product_{k>=1} ((1 - x^(5*k))/(1 - x^k))^n.
Original entry on oeis.org
1, 1, 5, 22, 105, 501, 2456, 12160, 60801, 306130, 1550255, 7887034, 40281720, 206405967, 1060602800, 5463059772, 28199365873, 145832364580, 755420838614, 3918935839970, 20357605331355, 105878815699042, 551273881133750, 2873161931172668, 14988243880188600
Offset: 0
-
Table[SeriesCoefficient[Product[((1 - x^(5 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[Product[(1 + x^k + x^(2 k) + x^(3 k) + x^(4 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 24}]
(* Calculation of constant d: *) With[{k = 5}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
A304443
Coefficient of x^n in Product_{k>=1} (1+x^k)^(2*n).
Original entry on oeis.org
1, 2, 10, 62, 394, 2562, 16966, 113794, 770442, 5254334, 36042250, 248403586, 1718732998, 11931569028, 83064794746, 579696375972, 4054279504266, 28408328186508, 199390547044342, 1401564307833908, 9865190079554954, 69522550703432476, 490484539061916794
Offset: 0
-
nmax = 25; Table[SeriesCoefficient[Product[(1+x^k)^(2*n), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
nmax = 25; Table[SeriesCoefficient[(QPochhammer[-1, x]/2)^(2*n), {x, 0, n}], {n, 0, nmax}]
(* Calculation of constants {d,c}: *) {1/r, Sqrt[Derivative[0, 1][QPochhammer][-1, r*s] / (Pi*r*(Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s]^2 + 2*s*Derivative[0, 2][QPochhammer][-1, r*s]))]} /. FindRoot[{4*s == QPochhammer[-1, r*s]^2, 2*r*Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)
A304445
Coefficient of x^n in Product_{k>=1} (1+x^k)^(n^2).
Original entry on oeis.org
1, 1, 10, 174, 4132, 126905, 4802046, 216313349, 11313533064, 674172155790, 45102830448510, 3347925678474168, 273085613904116184, 24282144087974698445, 2337736453663291696624, 242272777074973285192935, 26892702305505020726198800, 3183326728470139531614913088
Offset: 0
-
nmax = 20; Table[SeriesCoefficient[Product[(1+x^k)^(n^2), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2)^(n^2), {x, 0, n}], {n, 0, nmax}]
A380291
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^2) is the g.f. of A027998.
Original entry on oeis.org
1, 1, 9, 64, 425, 3026, 21672, 157095, 1149289, 8464240, 62683134, 466307865, 3482008904, 26083955002, 195932407939, 1475267031164, 11131100990825, 84140066313620, 637054366975740, 4830417047590165, 36674477204674750, 278779034863684377, 2121418004609211361, 16159262748227985561
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 157095 - 1 = 2*(7^3)*229 == 0 (mod 7^3)
a(11) - a(1) = 466307865 - 1 = (2^3)*(11^3)*43793 == 0 (mod 11^3)
a(3*7) - a(3) = 278779034863684377 - 64 = (7^4)*43*26891*100413601 == 0 (mod 7^4)
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
-
with(numtheory):
s_3 := n-> add((-1)^(n/d+1)*d^3, d in divisors(n)):
G(x) := series(exp(add(s_3(k)*x^k/k, k = 1..23)), x, 24):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
-
Table[SeriesCoefficient[Product[(1 + x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
(* or *)
Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^3, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
A303071
a(n) = [x^n] (1/(1 - x))*Product_{k>=1} (1 + x^k)^n.
Original entry on oeis.org
1, 2, 6, 23, 90, 362, 1491, 6225, 26242, 111479, 476466, 2046464, 8825559, 38191467, 165751529, 721177328, 3144703234, 13739010855, 60127642329, 263545670385, 1156732481150, 5083320593976, 22364017244278, 98491038664903, 434160710647831, 1915482295831037, 8457663096970431
Offset: 0
-
Table[SeriesCoefficient[1/(1 - x) Product[(1 + x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[1/(1 - x) Exp[n Sum[(-1)^(k + 1) x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]
A304625
a(n) = [x^n] Product_{k>=1} ((1 - x^(n*k))/(1 - x^k))^n.
Original entry on oeis.org
1, 0, 3, 19, 101, 501, 2486, 12398, 62329, 315436, 1605330, 8207552, 42124368, 216903051, 1119974861, 5796944342, 30068145889, 156250892593, 813310723907, 4239676354631, 22130265931880, 115654632452514, 605081974091853, 3168828466966365, 16610409114771876, 87141919856550506
Offset: 0
Cf.
A000065,
A008485,
A022567,
A093160,
A270913,
A285927,
A285928,
A286653,
A296044,
A296162,
A296163,
A304626.
-
Table[SeriesCoefficient[Product[((1 - x^(n k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 25}]
A304626
a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(n*k)))^n.
Original entry on oeis.org
1, 0, 1, 10, 47, 201, 849, 3578, 15147, 64516, 276268, 1188342, 5130987, 22226036, 96543989, 420368843, 1834203939, 8018057328, 35107961157, 153950675566, 675978772306, 2971700764920, 13078268135661, 57613905606250, 254038914924767, 1121081799217206, 4951199308679965
Offset: 0
-
Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(n k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[Product[(1 + x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[(QPochhammer[-1, x, 1 + n]/QPochhammer[-1, x^n, 1 + n])^n, {x, 0, n}], {n, 0, 26}]
A319671
a(n) = [x^n] Product_{k>=2} (1 + x^k)^n.
Original entry on oeis.org
1, 0, 2, 3, 10, 30, 77, 252, 682, 2145, 6182, 18887, 56317, 170534, 515930, 1563843, 4759338, 14480073, 44203595, 134972504, 412984510, 1264601502, 3877302717, 11898761051, 36548512477, 112358685555, 345673541514, 1064250223230, 3278695047218, 10107173174013, 31174889414807
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + x^k)^n, {k, 2, n}], {x, 0, n}], {n, 0, 30}]
Table[SeriesCoefficient[1/((1 + x) QPochhammer[x, x^2])^n, {x, 0, n}], {n, 0, 30}]
Table[SeriesCoefficient[Exp[n Sum[(Sum[Mod[d, 2] d, {d, Divisors[k]}] + (-1)^k) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 30}]
Comments