A007837
Number of partitions of n-set with distinct block sizes.
Original entry on oeis.org
1, 1, 1, 4, 5, 16, 82, 169, 541, 2272, 17966, 44419, 201830, 802751, 4897453, 52275409, 166257661, 840363296, 4321172134, 24358246735, 183351656650, 2762567051857, 10112898715063, 62269802986835, 343651382271526, 2352104168848091, 15649414071734847
Offset: 0
From _Gus Wiseman_, Jul 13 2019: (Start)
The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}}
{{1},{2,3}} {{1},{2,3,4}} {{1},{2,3,4,5}}
{{1,2},{3}} {{1,2,3},{4}} {{1,2},{3,4,5}}
{{1,3},{2}} {{1,2,4},{3}} {{1,2,3},{4,5}}
{{1,3,4},{2}} {{1,2,3,4},{5}}
{{1,2,3,5},{4}}
{{1,2,4},{3,5}}
{{1,2,4,5},{3}}
{{1,2,5},{3,4}}
{{1,3},{2,4,5}}
{{1,3,4},{2,5}}
{{1,3,4,5},{2}}
{{1,3,5},{2,4}}
{{1,4},{2,3,5}}
{{1,4,5},{2,3}}
{{1,5},{2,3,4}}
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics, Fig. 3, arXiv:math/0606370 [math.CO], 2006.
- Knopfmacher, A., Odlyzko, A. M., Pittel, B., Richmond, L. B., Stark, D., Szekeres, G. and Wormald, N. C., The asymptotic number of set partitions with unequal block sizes, Electron. J. Combin., 6 (1999), no. 1, Research Paper 2, 36 pp.
- Gus Wiseman, Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.
Cf.
A000110,
A005651,
A007838,
A032011,
A035470,
A038041,
A178682,
A265950,
A271423,
A275780,
A326026,
A326514,
A326517,
A326533.
-
a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 06 2008
# second Maple program:
A007837 := proc(n) option remember; local k; `if`(n = 0, 1,
add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end:
seq(A007837(i),i=0..24); # Peter Luschny, Apr 25 2011
-
nn=20;p=Product[1+x^i/i!,{i,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[p,{x,0,nn}],x],1] (* Geoffrey Critzer, Sep 22 2012 *)
a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Vladeta Jovovic *)
-
{my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Dec 21 2017
A271424
Number T(n,k) of set partitions of [n] with minimal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 3, 0, 1, 0, 51, 0, 0, 0, 1, 0, 132, 55, 15, 0, 0, 1, 0, 771, 105, 0, 0, 0, 0, 1, 0, 3089, 945, 0, 105, 0, 0, 0, 1, 0, 18388, 1218, 1540, 0, 0, 0, 0, 0, 1, 0, 96423, 15456, 3150, 0, 945, 0, 0, 0, 0, 1, 0, 627529, 26785, 24255, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,2) = 3: 12|34, 13|24, 14|23.
T(4,4) = 1: 1|2|3|4.
T(6,3) = 15: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 15|23|46, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 11, 3, 0, 1;
0, 51, 0, 0, 0, 1;
0, 132, 55, 15, 0, 0, 1;
0, 771, 105, 0, 0, 0, 0, 1;
0, 3089, 945, 0, 105, 0, 0, 0, 1;
0, 18388, 1218, 1540, 0, 0, 0, 0, 0, 1;
0, 96423, 15456, 3150, 0, 945, 0, 0, 0, 0, 1;
Columns k=0-10 give
A000007,
A271426,
A271762,
A271763,
A271764,
A271765,
A271766,
A271767,
A271768,
A271769,
A271770.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
T:= (n, k)-> b(n$2, k)-`if`(n=k,0,b(n$2, k+1)):
seq(seq(T(n, k), k=0..n), n=0..12);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]* b[n-i*j, i-1, k]/j!, {j, Join[{0}, Range[k, n/i]] // Union}]]]; T[n_, k_] := b[n, n, k] - If[n == k, 0, b[n, n, k + 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 16 2017, adapted from Maple *)
A271425
Number of set partitions of [2n] with maximal block length multiplicity equal to n.
Original entry on oeis.org
1, 1, 9, 35, 385, 3717, 48279, 691119, 11229075, 200982925, 3928974907, 83060120871, 1885501840677, 45694145548625, 1176704027583075, 32077561625780175, 922854842240358825, 27951355368760441365, 889580295850449177975, 29707539555680924142975
Offset: 0
a(1) = 1: 12.
a(2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(3) = 35: 123|4|5|6, 124|3|5|6, 12|34|56, 125|3|4|6, 12|35|46, 12|36|45, 126|3|4|5, 134|2|5|6, 13|24|56, 135|2|4|6, 13|25|46, 13|26|45, 136|2|4|5, 14|23|56, 1|234|5|6, 15|23|46, 1|235|4|6, 16|23|45, 1|236|4|5, 145|2|3|6, 14|25|36, 14|26|35, 146|2|3|5, 15|24|36, 1|245|3|6, 16|24|35, 1|246|3|5, 15|26|34, 16|25|34, 1|2|345|6, 1|2|346|5, 156|2|3|4, 1|256|3|4, 1|2|356|4, 1|2|3|456.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> `if`(n=0, 1, b(2*n$2, n)-b(2*n$2, n-1)):
seq(a(n), n=0..20);
-
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]*b[n - i*j, i-1, k]/j!, {j, 0, Min[k, n/i]}]]]; a[n_] := If[n==0, 1, b[2n, 2n, n] - b[2n, 2n, n-1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2017, translated from Maple *)
A360182
Number of partitions of [n] where each block size occurs at most twice.
Original entry on oeis.org
1, 1, 2, 4, 14, 41, 152, 575, 2634, 13207, 59927, 312170, 1946870, 10547135, 65168469, 421552409, 3148178034, 20138277895, 141300123713, 1063603633154, 9108280640649, 68154636145922, 549824347467969, 4551458909818969, 39948625639349706, 406913301246314341
Offset: 0
a(0) = 1: (), the empty partition.
a(1) = 1: 1.
a(2) = 2: 12, 1|2.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 14: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(5) = 41: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 12|34|5, 125|3|4, 12|35|4, 12|3|45, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 13|24|5, 135|2|4, 13|25|4, 13|2|45, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 1|234|5, 15|23|4, 1|235|4, 1|23|45, 145|2|3, 14|25|3, 14|2|35, 15|24|3, 1|245|3, 1|24|35, 15|2|34, 1|25|34, 1|2|345.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(combinat[multinomial](n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..min(2, n/i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, {n - i*j}~Join~ Table[i, {j}]]/j!*b[n - i*j, i - 1], {j, 0, Min[2, n/i]}]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 25}](* Jean-François Alcover, Nov 21 2023, after Alois P. Heinz *)
A271731
Number of set partitions of [n] with maximal block length multiplicity equal to two.
Original entry on oeis.org
1, 0, 9, 25, 70, 406, 2093, 10935, 41961, 267751, 1745040, 9744384, 60271016, 369277000, 2981920373, 19297914599, 136978951579, 1039245386419, 8924928983999, 65392069094065, 539711448752906, 4489189106832134, 39604974257078180, 404561197077466250
Offset: 2
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 2)-b(n$2, 1):
seq(a(n), n=2..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 2] - b[n, n, 1];
Table[a[n], {n, 2, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
A271732
Number of set partitions of [n] with maximal block length multiplicity equal to three.
Original entry on oeis.org
1, 0, 10, 35, 245, 1036, 4984, 37990, 242330, 1387595, 10324457, 73271562, 550531436, 3836993356, 32056517432, 271603606580, 2249464283038, 18909114389770, 173349802631034, 1639551357457112, 15220220305707538, 147729311772991971, 1423109890697311335
Offset: 3
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 3)-b(n$2, 2):
seq(a(n), n=3..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 3] - b[n, n, 2];
Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
A271733
Number of set partitions of [n] with maximal block length multiplicity equal to four.
Original entry on oeis.org
1, 0, 15, 35, 385, 2331, 13335, 88110, 629200, 4811235, 35992957, 276332420, 2325570065, 20036259075, 171879027000, 1583318184855, 14476456463826, 139849724906591, 1347082690705367, 13909222770509990, 144001190692525628, 1519193757875044900
Offset: 4
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 4)-b(n$2, 3):
seq(a(n), n=4..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 4] - b[n, n, 3];
Table[a[n], {n, 4, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
A271734
Number of set partitions of [n] with maximal block length multiplicity equal to five.
Original entry on oeis.org
1, 0, 21, 56, 504, 3717, 29337, 190674, 1460745, 12532520, 100025926, 845104624, 7657043576, 69364078980, 657324748866, 6374275533525, 64070264089020, 653567576544498, 6979149079277683, 74951288500334708, 835338959385664426, 9373747854520238761
Offset: 5
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 5)-b(n$2, 4):
seq(a(n), n=5..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 5] - b[n, n, 4];
Table[a[n], {n, 5, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
A271735
Number of set partitions of [n] with maximal block length multiplicity equal to six.
Original entry on oeis.org
1, 0, 28, 84, 840, 5082, 48279, 413127, 3093090, 26601575, 255431176, 2309491548, 20998179748, 209051155600, 2137087555220, 21652990622410, 230200208290745, 2517313465793819, 28104615964752327, 320432370881428575, 3760667223506993800, 45094960570293757695
Offset: 6
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 6)-b(n$2, 5):
seq(a(n), n=6..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 6] - b[n, n, 5];
Table[a[n], {n, 6, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
A271736
Number of set partitions of [n] with maximal block length multiplicity equal to seven.
Original entry on oeis.org
1, 0, 36, 120, 1320, 8712, 70356, 691119, 6628050, 55398200, 528441056, 5607882072, 55953959256, 559256993400, 6033783063160, 66852986570260, 743874599106485, 8455383000184208, 100088596628849400, 1202568046655647100, 14764362076427728050
Offset: 7
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 7)-b(n$2, 6):
seq(a(n), n=7..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 7] - b[n, n, 6];
Table[a[n], {n, 7, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
Showing 1-10 of 13 results.
Comments