cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 107 results. Next

A303708 Number of aperiodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 4, 0, 2, 0, 3, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 0, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 0, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 0, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.
The positions of zeros in this sequence are the prime powers A000961.

Examples

			The a(144) = 8 aperiodic factorizations are (2*2*2*3*6), (2*2*2*18), (2*2*3*12), (2*3*24), (2*6*12), (2*72), (3*48) and (6*24). Missing from this list are (12*12), (2*2*6*6) and (2*2*2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]===1&]],{n,100}]

Formula

a(n) = Sum_{d in A007916, d|A052409(n)} mu(d) * A303707(n^(1/d)).

A305566 Number of finite sets of relatively prime positive integers > 1 with least common multiple n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 10, 0, 2, 2, 0, 0, 10, 0, 10, 2, 2, 0, 44, 0, 2, 0, 10, 0, 84, 0, 0, 2, 2, 2, 122, 0, 2, 2, 44, 0, 84, 0, 10, 10, 2, 0, 184, 0, 10, 2, 10, 0, 44, 2, 44, 2, 2, 0, 1590, 0, 2, 10, 0, 2, 84, 0, 10, 2, 84, 0, 1156, 0, 2, 10, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Comments

From Robert Israel, Jun 06 2018: (Start)
a(n) depends only on the prime signature of n.
If n is in A000961, a(n)=0.
If n is in A006881, a(n)=2. (End)
If n = p^k*q, where p and q are distinct primes and k >= 1, then a(n) = 3*4^(k-1)-2^(k-1). - Robert Israel, Jun 07 2018

Examples

			The a(12) = 10 sets:
{3,4},
{2,3,4}, {2,3,12}, {3,4,6}, {3,4,12},
{2,3,4,6}, {2,3,4,12}, {2,3,6,12}, {3,4,6,12},
{2,3,4,6,12}.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) g(sort(map(t -> t[2],ifactors(n)[2]))) end proc:
    f(1):= 0:
    g:= proc(L) option remember;
      local nL, Cands, nC, Cons, i;
      nL:= nops(L);
      Cands:= [[]];
      for i from 1 to nL do
        Cands:= [seq(seq([op(s),t],t=0..L[i]),s=Cands)];
      od:
      Cands:= remove(t -> max(t)=0, Cands);
      nC:= nops(Cands);
      Cons:= [seq(select(t -> Cands[t][i]=0, {$1..nC}),i=1..nL),
              seq(select(t -> Cands[t][i]=L[i], {$1..nC}), i=1..nL)];
      h(Cons, {$1..nC})
    end proc:
    h:= proc(Cons, Cands)
      local t,i,Consi, Candsi;
      if Cons = [] then return 2^nops(Cands) fi;
      t:= 0;
      for i from 1 to nops(Cons[1]) do
        Consi:= map(proc(t) if member(Cons[1][i],t) then NULL else t minus Cons[1][1..i-1] fi end proc, Cons[2..-1]);
        if member({},Consi) then next fi;
        Candsi:= Cands minus Cons[1][1..i];
        t:= t + procname(Consi, Candsi)
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 07 2018
  • Mathematica
    Table[Length[Select[Subsets[Rest[Divisors[n]]],And[GCD@@#==1,LCM@@#==n]&]],{n,100}]

A317776 Number of strict multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 1, 3, 13, 59, 313, 1847, 11977, 84483, 642405, 5228987, 45297249, 415582335, 4021374193, 40895428051, 435721370413, 4850551866619, 56282199807401, 679220819360775, 8508809310177481, 110454586096508563, 1483423600240661781, 20581786429087269819
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			The a(3) = 13 strict multiset partitions:
  {{1,1,1}}, {{1},{1,1}},
  {{1,2,2}}, {{1},{2,2}}, {{2},{1,2}},
  {{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
  {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
		

Crossrefs

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
        end:
    a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 16 2019
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@#&]],{n,9}]
    (* Second program: *)
    c := Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] c[c[k+i-1, i], j], {j, 0, n/i}]]];
    a[n_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {k, 0, n}, {i, 0, k}];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Extensions

a(0), a(8)-a(22) from Alois P. Heinz, Sep 16 2019

A319055 Maximum product of an integer partition of n with relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 6, 6, 12, 18, 24, 36, 54, 72, 108, 162, 216, 324, 486, 648, 972, 1458, 1944, 2916, 4374, 5832, 8748, 13122, 17496, 26244, 39366, 52488, 78732, 118098, 157464, 236196, 354294, 472392, 708588, 1062882, 1417176, 2125764, 3188646, 4251528, 6377292
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2018

Keywords

Comments

After a(7), this appears to be the same as A319054.

Crossrefs

Programs

  • Mathematica
    Table[Max[Times@@@Select[IntegerPartitions[n],GCD@@#==1&]],{n,20}]

A319778 Number of non-isomorphic set systems of weight n with empty intersection whose dual is also a set system with empty intersection.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 13, 28, 72, 181, 483
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The dual of a multiset partition has empty intersection iff no part contains all the vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 13 multiset partitions:
2: {{1},{2}}
3: {{1},{2},{3}}
4: {{1},{3},{2,3}}
   {{1},{2},{3},{4}}
5: {{1},{2,4},{3,4}}
   {{2},{1,3},{2,3}}
   {{1},{2},{3},{2,3}}
   {{1},{2},{4},{3,4}}
   {{1},{2},{3},{4},{5}}
6: {{3},{1,4},{2,3,4}}
   {{1,2},{1,3},{2,3}}
   {{1,3},{2,4},{3,4}}
   {{1},{2},{1,3},{2,3}}
   {{1},{2},{3,5},{4,5}}
   {{1},{3},{4},{2,3,4}}
   {{1},{3},{2,4},{3,4}}
   {{1},{4},{2,4},{3,4}}
   {{2},{3},{1,3},{2,3}}
   {{2},{4},{1,2},{3,4}}
   {{1},{2},{3},{4},{3,4}}
   {{1},{2},{3},{5},{4,5}}
   {{1},{2},{3},{4},{5},{6}}
		

Crossrefs

A293627 Number of knapsack factorizations whose factors sum to n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 8, 11, 12, 19, 21, 27, 34, 45, 51, 69, 77, 100, 117, 146
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2017

Keywords

Comments

A knapsack factorization is a finite multiset of positive integers greater than one such that every distinct submultiset has a different product.

Examples

			The a(12) = 19 partitions are:
(12),
(10 2), (9 3), (8 4), (7 5), (6 6),
(8 2 2), (7 3 2), (6 4 2), (6 3 3), (5 5 2), (5 4 3), (4 4 4),
(6 2 2 2), (5 3 2 2), (4 3 3 2), (3 3 3 3),
(3 3 2 2 2),
(2 2 2 2 2 2).
		

Crossrefs

Programs

  • Mathematica
    nn=22;
    apsQ[y_]:=UnsameQ@@Times@@@Union[Rest@Subsets[y]];
    Table[Length@Select[IntegerPartitions[n],apsQ],{n,nn}]

A305150 Number of factorizations of n into distinct, pairwise indivisible factors greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 3, 1, 2, 1, 6, 2, 2, 2, 3, 1, 6, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 1, 5, 1, 3, 5
Offset: 1

Views

Author

Gus Wiseman, May 26 2018

Keywords

Examples

			The a(60) = 6 factorizations are (3 * 4 * 5), (3 * 20), (4 * 15), (5 * 12), (6 * 10), (60). Missing from this list are (2 * 3 * 10), (2 * 5 * 6), (2 * 30).
		

Crossrefs

Programs

  • Mathematica
    facs[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d] &, Select[facs[n/d], Min@@ # >= d &]], {d, Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], UnsameQ@@ # && Select[Tuples[Union[#], 2], UnsameQ@@ # && Divisible@@ # &] == {} &]], {n, 100}]
  • PARI
    A305150(n, m=n, facs=List([])) = if(1==n, 1, my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&factorback(apply(x -> (x%d),Vec(facs))), newfacs = List(facs); listput(newfacs,d); s += A305150(n/d, d-1, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A045778(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

More terms from Antti Karttunen, Dec 06 2018

A328336 Numbers with no consecutive prime indices relatively prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2019

Keywords

Comments

First differs from A318978 in having 897, with prime indices {2, 6, 9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions no consecutive parts relatively prime (A328187).
Besides the initial 1 this differs from A305078: 47541=897*prime(16) is in A305078 but not in this set. - Andrey Zabolotskiy, Nov 13 2019

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  37: {12}
  39: {2,6}
  41: {13}
  43: {14}
		

Crossrefs

Numbers with consecutive prime indices relatively prime are A328335.
Strict partitions with no consecutive parts relatively prime are A328220.
Numbers with relatively prime prime indices are A289509.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MatchQ[primeMS[#],{_,x_,y_,_}/;GCD[x,y]==1]&]

A319077 Number of non-isomorphic strict multiset partitions (sets of multisets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 1, 3, 12, 37, 130, 428, 1481, 5091, 17979, 64176, 234311, 869645, 3295100, 12720494, 50083996, 200964437, 821845766, 3423694821, 14524845181, 62725701708, 275629610199, 1231863834775, 5597240308384, 25844969339979, 121224757935416, 577359833539428, 2791096628891679
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 12 strict multiset partitions with empty intersection:
2: {{1},{2}}
3: {{1},{2,2}}
   {{1},{2,3}}
   {{1},{2},{3}}
4: {{1},{2,2,2}}
   {{1},{2,3,3}}
   {{1},{2,3,4}}
   {{1,1},{2,2}}
   {{1,2},{3,3}}
   {{1,2},{3,4}}
   {{1},{2},{1,2}}
   {{1},{2},{2,2}}
   {{1},{2},{3,3}}
   {{1},{2},{3,4}}
   {{1},{3},{2,3}}
   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, subst(x*Ser(K(q, t, n\t)/t), x, x^t))}
    a(n)={my(s=0); forpart(q=n, my(f=prod(i=1, #q, 1 - x^q[i]), u=R(q,n)); s+=permcount(q)*sum(k=0, n, my(c=polcoef(f,k)); if(c, c*polcoef(exp(sum(t=1, n\(k+1), x^(t*k)*u[t] - subst(x^(t*k)*u[t] + O(x*x^(n\2)), x, x^2), O(x*x^n) ))*if(k,1+x^k,1), n))) ); s/n!} \\ Andrew Howroyd, May 30 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 30 2023

A328168 Numbers whose prime indices minus 1 are relatively prime.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 35, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 81, 84, 87, 90, 91, 93, 95, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 130, 132, 133, 135, 138, 140, 141, 143, 144, 145, 147
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2019

Keywords

Comments

A multiset is relatively prime if the GCD of its elements is 1. Zeros are ignored when computing GCD, and the empty set has GCD 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions whose parts minus one are relatively prime. The enumeration of these partitions by sum is given by A328170.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    6: {1,2}
    9: {2,2}
   12: {1,1,2}
   15: {2,3}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   33: {2,5}
   35: {3,4}
   36: {1,1,2,2}
   39: {2,6}
   42: {1,2,4}
   45: {2,2,3}
   48: {1,1,1,1,2}
   51: {2,7}
   54: {1,2,2,2}
   57: {2,8}
		

Crossrefs

Positions of 1's in A328167.
Numbers whose prime indices are relatively prime are A289509.
The version for prime indices plus 1 is A318981.
The GCD of prime indices is A289508.
Partitions whose parts minus 1 are relatively prime are A328170.

Programs

  • Maple
    q:= n-> igcd(map(i-> numtheory[pi](i[1])-1, ifactors(n)[2])[])=1:
    select(q, [$1..150])[];  # Alois P. Heinz, Oct 13 2019
  • Mathematica
    Select[Range[100],GCD@@(PrimePi/@First/@If[#==1,{},FactorInteger[#]]-1)==1&]
Previous Showing 31-40 of 107 results. Next