A022582
Expansion of Product_{m>=1} (1+x^m)^17.
Original entry on oeis.org
1, 17, 153, 986, 5134, 22967, 91528, 332741, 1121864, 3550518, 10644516, 30446116, 83554915, 221028152, 565733446, 1405559677, 3398860779, 8018057345, 18489507853, 41750241112, 92455892640, 201066321781, 429927351485, 904832464581, 1876192580514, 3836193955660, 7740691696577
Offset: 0
-
Coefficients(&*[(1+x^m)^17:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^17,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^17)) \\ G. C. Greubel, Feb 25 2018
A022583
Expansion of Product_{m>=1} (1+x^m)^18.
Original entry on oeis.org
1, 18, 171, 1158, 6309, 29430, 121962, 460008, 1605996, 5254334, 16260867, 47949804, 135509922, 368764290, 970099191, 2475106170, 6141671649, 14856839874, 35107961175, 81189855828, 184033842021, 409446105486, 895231350108, 1925717858910, 4079428991751, 8518121246538
Offset: 0
-
Coefficients(&*[(1+x^m)^18:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^18,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^18)) \\ G. C. Greubel, Feb 25 2018
A022584
Expansion of Product_{m>=1} (1+x^m)^19.
Original entry on oeis.org
1, 19, 190, 1349, 7676, 37278, 160417, 626924, 2263698, 7647652, 24405633, 74120672, 215505334, 602763220, 1628328880, 4262845643, 10845598563, 26882001287, 65048680364, 153950675585, 356936640088, 811869015895, 1813912504439, 3985419541978, 8619872682020, 18369414409148
Offset: 0
-
Coefficients(&*[(1+x^m)^19:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^19,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^19)) \\ G. C. Greubel, Feb 25 2018
A022585
Expansion of Product_{m>=1} (1+x^m)^20.
Original entry on oeis.org
1, 20, 210, 1560, 9255, 46724, 208510, 843320, 3145855, 10963160, 36042250, 112633760, 336622160, 966897820, 2680139300, 7193849624, 18752326235, 47590579080, 117840608100, 285228791880, 675978772326, 1570897356960, 3584273539170, 8038904002760, 17741382028085, 38563932406500
Offset: 0
-
Coefficients(&*[(1+x^m)^20:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^20,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^20)) \\ G. C. Greubel, Feb 25 2018
A022586
Expansion of Product_{m>=1} (1+x^m)^21.
Original entry on oeis.org
1, 21, 231, 1792, 11067, 58002, 268093, 1120899, 4315269, 15497986, 52441347, 168487473, 517184185, 1524390777, 4332440454, 11914441196, 31798680774, 82574231187, 209091601271, 517272712845, 1252351944165, 2971700764941, 6920411525727, 15835150526244, 35640093688017
Offset: 0
-
Coefficients(&*[(1+x^m)^21:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^21,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^21)) \\ G. C. Greubel, Feb 25 2018
A022587
Expansion of Product_{m>=1} (1 + x^m)^22.
Original entry on oeis.org
1, 22, 253, 2046, 13134, 71368, 341275, 1473494, 5848810, 21628002, 75261384, 248403586, 782547909, 2365168542, 6887441198, 19393122562, 52959869787, 140631776582, 363943223941, 919706094494, 2273411319069, 5505315501136, 13078268135683, 30514651732686, 70005101272876
Offset: 0
-
Coefficients(&*[(1+x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^22,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^22)) \\ G. C. Greubel, Feb 25 2018
A022588
Expansion of Product_{m>=1} (1 + x^m)^23.
Original entry on oeis.org
1, 23, 276, 2323, 15479, 87101, 430445, 1917349, 7839849, 29824583, 106646308, 361327079, 1167406906, 3615602714, 10780913004, 31061653709, 86741652761, 235404301651, 622271232287, 1605432041576, 4049617772390, 10002785010369, 24227747380447, 57613905606273, 134662398395411
Offset: 0
-
Coefficients(&*[(1+x^m)^23:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^23,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^23)) \\ G. C. Greubel, Feb 25 2018
A022589
Expansion of Product_{m>=1} (1 + q^m)^25.
Original entry on oeis.org
1, 25, 325, 2950, 21100, 126905, 667850, 3157725, 13667175, 54900675, 206841715, 736953800, 2499500175, 8113694575, 25320834800, 76253908740, 222308896150, 629146702350, 1732518057650, 4651937973250, 12201443983695, 31311905220800, 78732034002275, 194220161393825
Offset: 0
-
Coefficients(&*[(1+x^m)^25:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^25,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^25)) \\ G. C. Greubel, Feb 25 2018
A022590
Expansion of Product_{m>=1} (1+q^m)^26.
Original entry on oeis.org
1, 26, 351, 3302, 24427, 151658, 822484, 4001660, 17799041, 73391968, 283542740, 1034983222, 3593364255, 11931569028, 38062054017, 117095671862, 348538604492, 1006539781078, 2827014674081, 7738495452714, 20683325376064, 54066855041446, 138427417637249, 347584258977384
Offset: 0
-
Coefficients(&*[(1+x^m)^26:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 19 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^26,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^26)) \\ G. C. Greubel, Feb 19 2018
A022591
Expansion of Product_{m>=1} (1+q^m)^27.
Original entry on oeis.org
1, 27, 378, 3681, 28134, 180144, 1005957, 5032422, 22986801, 97229361, 384953553, 1438738443, 5110502256, 17348445108, 56541857409, 177611637141, 539501563962, 1589134470966, 4550281700055, 12692702415312, 34556103662778, 91975719684573, 239686155975618
Offset: 0
-
Coefficients(&*[(1+x^m)^27:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 19 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^27,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^27)) \\ G. C. Greubel, Feb 19 2018