cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A319496 Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.

Original entry on oeis.org

2, 3, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 151, 223, 247, 251, 281, 299, 311, 359, 377, 427, 463, 503, 593, 611, 659, 689, 703, 719, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1291, 1321, 1339, 1363, 1511, 1619, 1703, 1733, 1739, 1757, 1769
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of connected strict antichains of multisets spanning an initial interval of positive integers.

Examples

			The sequence of multisystems whose MM-numbers belong to the sequence begins:
    2: {{}}
    3: {{1}}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  151: {{1,1,2,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]

A322113 Number of non-isomorphic self-dual connected antichains of multisets of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 10, 18, 30
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. A multiset partition is self-dual if it is isomorphic to its dual. For example, {{1,1},{1,2,2},{2,3,3}} is self-dual, as it is isomorphic to its dual {{1,1,2},{2,2,3},{3,3}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(9) = 18 antichains:
  {{1}}  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}
                          {{12}{12}}  {{11}{122}}  {{112}{122}}
                                                   {{12}{13}{23}}
.
  {{1111111}}      {{11111111}}        {{111111111}}
  {{111}{1222}}    {{111}{11222}}      {{1111}{12222}}
  {{112}{1222}}    {{1112}{1222}}      {{1112}{11222}}
  {{11}{12}{233}}  {{112}{12222}}      {{1112}{12222}}
  {{12}{13}{233}}  {{1122}{1122}}      {{112}{122222}}
                   {{11}{122}{233}}    {{11}{11}{12233}}
                   {{12}{13}{2333}}    {{11}{122}{1233}}
                   {{13}{112}{233}}    {{112}{123}{233}}
                   {{13}{122}{233}}    {{113}{122}{233}}
                   {{12}{13}{24}{34}}  {{12}{111}{2333}}
                                       {{12}{13}{23333}}
                                       {{12}{133}{2233}}
                                       {{123}{123}{123}}
                                       {{13}{112}{2333}}
                                       {{22}{113}{2333}}
                                       {{12}{13}{14}{234}}
                                       {{12}{13}{22}{344}}
                                       {{12}{13}{24}{344}}
		

Crossrefs

A322138 Number of non-isomorphic weight-n blobs (2-connected weak antichains) of multisets with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 7, 7, 20, 26, 78, 184, 553
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(7) = 26 blobs:
  {{11}}  {{111}}  {{1111}}    {{11111}}  {{111111}}      {{1111111}}
  {{12}}  {{122}}  {{1122}}    {{11222}}  {{111222}}      {{1112222}}
          {{123}}  {{1222}}    {{12222}}  {{112222}}      {{1122222}}
                   {{1233}}    {{12233}}  {{112233}}      {{1122333}}
                   {{1234}}    {{12333}}  {{122222}}      {{1222222}}
                   {{11}{11}}  {{12344}}  {{122333}}      {{1222333}}
                   {{12}{12}}  {{12345}}  {{123333}}      {{1223333}}
                                          {{123344}}      {{1223344}}
                                          {{123444}}      {{1233333}}
                                          {{123455}}      {{1233444}}
                                          {{123456}}      {{1234444}}
                                          {{111}{111}}    {{1234455}}
                                          {{112}{122}}    {{1234555}}
                                          {{122}{122}}    {{1234566}}
                                          {{123}{123}}    {{1234567}}
                                          {{123}{233}}    {{112}{1222}}
                                          {{134}{234}}    {{122}{1233}}
                                          {{11}{11}{11}}  {{123}{2233}}
                                          {{12}{12}{12}}  {{123}{2333}}
                                          {{12}{13}{23}}  {{123}{2344}}
                                                          {{134}{2344}}
                                                          {{145}{2345}}
                                                          {{223}{1233}}
                                                          {{344}{1234}}
                                                          {{12}{13}{233}}
                                                          {{13}{14}{234}}
		

Crossrefs

A286519 Binary representation of the diagonal from the origin to the corner (or of the corner to the origin) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 11, 101, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 0

Views

Author

Robert Price, Jul 22 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 659; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Jul 22 2017: (Start)
G.f.: (1 - 10*x^2 + 110*x^3 - 100*x^4) / ((1 - x)*(1 - 10*x)).
a(n) = (10^(1+n) - 1) / 9 for n>2.
a(n) = 11*a(n-1) - 10*a(n-2) for n>4.
(End)

A286521 Decimal representation of the diagonal from the origin to the corner (or of the corner to the origin) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 5, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 0

Views

Author

Robert Price, Jul 22 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 659; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Jul 22 2017: (Start)
G.f.: (1 - 2*x^2 + 6*x^3 - 4*x^4) / ((1 - x)*(1 - 2*x)).
a(n) = 2^(1+n) - 1 for n>2.
a(n) = 3*a(n-1) - 2*a(n-2) for n>4.
(End)

A305053 If n = Product_i prime(x_i)^k_i, then a(n) = Sum_i k_i * omega(x_i) - omega(n), where omega = A001221 is number of distinct prime factors.

Original entry on oeis.org

0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, -1, 1, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 1, 0, 2, -1, 1, -1, 0, -1, 0, -1, 0, 0, 1, -1, 1, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 1, -1, 1, -1, 1, -1, 0, -1, 0, -1, 1, 0, 1, 0, 1, -1, 0
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Examples

			2925 = prime(2)^2 * prime(3)^2 * prime(6)^1, so a(2925) = 2*1 + 2*1 + 1*2 - 3 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>(k*PrimeNu[PrimePi[p]]-1)]],{n,100}]
  • PARI
    a(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,2]*omega(primepi(f[k,1]))) - omega(n);} \\ Michel Marcus, Jun 09 2018

Formula

Totally additive with a(prime(n)) = omega(n) - 1.
a(n) = A305054(n) - A001221(n). - Michel Marcus, Jun 09 2018

A305254 Number of factorizations f of n into factors greater than 1 such that the graph of f is a forest.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 14, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, May 28 2018

Keywords

Comments

Given a factorization f consisting of positive integers greater than one, let G(F) be a multigraph with one vertex for each factor and n edges between any two vertices with n common divisors greater than 1. For example, G(6,14,15,35) is a 4-cycle; G(6,12) is a 2-cycle because 6 and 12 have multiple common divisors. This sequence counts factorizations f such that G(f) is a forest, meaning it has no cycles. [Comment edited by Robert Munafo, Mar 24 2024]

Examples

			The a(72) = 14 factorizations:
     (72)
    (2*36)     (3*24)    (4*18)    (8*9)
   (2*2*18)   (2*3*12)   (2*4*9)  (3*3*8) (3*4*6)
   (2*2*2*9)  (2*2*3*6) (2*3*3*4)
  (2*2*2*3*3)
not counted: (2*6*6) because 6 and 6 share multiple divisors; likewise (6*12) because 6 and 12 share multiple divisors.
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[facs[n],Function[f,And@@(zensity[Select[f,Function[x,Divisible[#,x]]]]==-1&/@zsm[f])]]],{n,200}]

Extensions

Extensive clarification by Robert Munafo, Mar 22 2024

A317786 Matula-Goebel numbers of locally connected rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 23, 25, 27, 31, 81, 83, 97, 103, 115, 121, 125, 127, 243, 419, 431, 509, 515, 529, 563, 575, 625, 631, 661, 691, 709, 729, 961, 1067, 1331, 1543, 2095, 2187, 2369, 2575, 2645, 2875, 2897, 3001, 3125, 3637, 3691, 3803, 4091, 4201, 4637, 4663
Offset: 1

Views

Author

Gus Wiseman, Aug 07 2018

Keywords

Comments

An unlabeled rooted tree is locally connected if the branches directly under any given node are connected as a hypergraph.

Examples

			The sequence of locally connected trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   9: ((o)(o))
  11: ((((o))))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  81: ((o)(o)(o)(o))
  83: ((((o)(o))))
  97: ((((o))((o))))
		

Crossrefs

Programs

  • Mathematica
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[Length[csm[primeMS/@primeMS[n]]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[1000],rupQ[#]&]

A329632 Number of connected integer partitions of n whose distinct parts are pairwise indivisible.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 6, 4, 6, 1, 9, 2, 10, 6, 13, 3, 15, 6, 18, 8, 22, 9, 29, 10, 30, 20, 40, 22, 48, 24, 57, 36, 68
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2019

Keywords

Comments

Given an integer partition y of length k, let G(y) be the simple labeled graph with vertices {1..k} and edges between any two vertices i, j such that GCD(y_i, y_j) > 1. For example, G(6,14,15,35) is a 4-cycle. A partition y is said to be connected if G(y) is a connected graph.

Examples

			The a(n) partitions for n = 1, 4, 6, 10, 12, 14:
  (1)  (4)    (6)      (10)         (12)           (14)
       (2,2)  (3,3)    (5,5)        (6,6)          (7,7)
              (2,2,2)  (6,4)        (4,4,4)        (8,6)
                       (2,2,2,2,2)  (3,3,3,3)      (10,4)
                                    (2,2,2,2,2,2)  (6,4,4)
                                                   (2,2,2,2,2,2,2)
		

Crossrefs

The Heinz numbers of these partitions are given by A329559.
The strict version is A304717.
Connected partitions are A218970.
Pairwise indivisible partitions are A305148.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],stableQ[#,Divisible]&&Length[zsm[#]]<=1&]],{n,0,30}]

A303674 Number of connected integer partitions of n > 1 whose distinct parts are pairwise indivisible and whose z-density is -1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 1, 6, 4, 5, 1, 8, 2, 7, 5, 11, 3, 11, 5, 13, 6, 14, 7, 19, 6, 19, 15, 24, 13, 28, 15, 33, 20, 34, 22, 46, 30, 48, 32, 57, 39, 67, 48, 76, 63, 88, 62, 104, 88, 110, 94, 130, 115, 164, 121, 172, 152, 198, 176, 229, 203, 270, 235, 293, 272, 341, 311, 375, 349, 453, 420, 506, 452, 570, 547
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2018

Keywords

Comments

The z-density of a multiset S is defined to be Sum_{s in S} (omega(s) - 1) - omega(lcm(S)), where omega = A001221 and lcm is least common multiple.
Given a finite multiset S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(18) = 8 integer partitions are (18), (14,4), (10,8), (9,9), (10,4,4), (6,4,4,4), (3,3,3,3,3,3), (2,2,2,2,2,2,2,2,2).
The a(20) = 7 integer partitions are (20), (14,6), (12,8), (10,6,4), (5,5,5,5), (4,4,4,4,4), (2,2,2,2,2,2,2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[IntegerPartitions[n],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,30}]

Extensions

a(51)-a(81) from Robert Price, Sep 15 2018
Previous Showing 31-40 of 42 results. Next