cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A331965 Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 56, 64, 76, 86, 106, 112, 128, 133, 152, 172, 212, 214, 224, 256, 262, 266, 301, 304, 326, 344, 371, 424, 428, 448, 512, 524, 526, 532, 602, 608, 622, 652, 688, 742, 749, 766, 817, 848, 856, 886, 896, 917, 1007, 1024, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2020

Keywords

Comments

First differs from A331683 in having 133, the Matula-Goebel number of the tree ((oo)(ooo)).
Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, and all composite numbers that are n times a power of two, where n is a squarefree number whose prime indices already belong to the sequence, and a prime index of n is a number m such that prime(m) divides n. [Clarified by Peter Munn and Gus Wiseman, Jun 24 2021]

Examples

			The sequence of all lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  133: ((oo)(ooo))
  152: (ooo(ooo))
  172: (oo(o(oo)))
  212: (oo(oooo))
  214: (o(oo(oo)))
The sequence of terms together with their prime indices begins:
    1: {}                 224: {1,1,1,1,1,4}
    4: {1,1}              256: {1,1,1,1,1,1,1,1}
    8: {1,1,1}            262: {1,32}
   14: {1,4}              266: {1,4,8}
   16: {1,1,1,1}          301: {4,14}
   28: {1,1,4}            304: {1,1,1,1,8}
   32: {1,1,1,1,1}        326: {1,38}
   38: {1,8}              344: {1,1,1,14}
   56: {1,1,1,4}          371: {4,16}
   64: {1,1,1,1,1,1}      424: {1,1,1,16}
   76: {1,1,8}            428: {1,1,28}
   86: {1,14}             448: {1,1,1,1,1,1,4}
  106: {1,16}             512: {1,1,1,1,1,1,1,1,1}
  112: {1,1,1,1,4}        524: {1,1,32}
  128: {1,1,1,1,1,1,1}    526: {1,56}
  133: {4,8}              532: {1,1,4,8}
  152: {1,1,1,8}          602: {1,4,14}
  172: {1,1,14}           608: {1,1,1,1,1,8}
  212: {1,1,16}           622: {1,64}
  214: {1,28}             652: {1,1,38}
		

Crossrefs

The non-semi case is {1}.
Not requiring lone-child-avoidance gives A306202.
The locally disjoint version is A331683.
These trees are counted by A331966.
The semi-lone-child-avoiding case is A331994.
Matula-Goebel numbers of rooted identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Semi-identity trees are counted by A306200.

Programs

  • Mathematica
    csiQ[n_]:=n==1||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@csiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],csiQ]

Formula

Intersection of A291636 and A306202.

A331873 Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 69, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 138, 144, 148, 152, 161, 162, 169, 172, 178, 184, 192, 196, 202, 206, 207, 208, 212, 214, 216, 224, 243
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

First differs from A331936 in having 69, the Matula-Goebel number of the tree ((o)((o)(o))).
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime numbers whose distinct prime indices are pairwise coprime and already belong to the sequence, where a singleton is always considered to be pairwise coprime. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding locally disjoint rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  46: (o((o)(o)))
  48: (oooo(o))
  49: ((oo)(oo))
		

Crossrefs

Not requiring lone-child-avoidance gives A316495.
A superset of A320269.
The semi-identity tree case is A331681.
The non-semi version (i.e., not containing 2) is A331871.
These trees counted by vertices are A331872.
These trees counted by leaves are A331874.
Not requiring local disjointness gives A331935.
The identity tree case is A331937.

Programs

  • Mathematica
    msQ[n_]:=n==1||n==2||!PrimeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],msQ]

A331966 Number of lone-child-avoiding rooted semi-identity trees with n vertices.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 9, 16, 30, 55, 105, 200, 388, 754, 1483, 2923, 5807, 11575, 23190, 46608, 94043, 190287, 386214, 785831, 1602952, 3276845, 6712905, 13778079, 28330583, 58350582, 120370731, 248676129, 514459237, 1065696295, 2210302177, 4589599429, 9540623926
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(9) = 16 trees (empty column shown as dot):
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)    (oooooooo)
                     (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))   (o(oooooo))
                              (oo(oo))  (oo(ooo))   (oo(oooo))   (oo(ooooo))
                                        (ooo(oo))   (ooo(ooo))   (ooo(oooo))
                                        (o(o(oo)))  (oooo(oo))   (oooo(ooo))
                                                    ((oo)(ooo))  (ooooo(oo))
                                                    (o(o(ooo)))  ((oo)(oooo))
                                                    (o(oo(oo)))  (o(o(oooo)))
                                                    (oo(o(oo)))  (o(oo)(ooo))
                                                                 (o(oo(ooo)))
                                                                 (o(ooo(oo)))
                                                                 (oo(o(ooo)))
                                                                 (oo(oo(oo)))
                                                                 (ooo(o(oo)))
                                                                 ((oo)(o(oo)))
                                                                 (o(o(o(oo))))
		

Crossrefs

The non-semi case is A000007.
Lone-child-avoiding rooted trees are A001678.
The locally disjoint case is A212804.
Not requiring lone-child-avoidance gives A306200.
Matula-Goebel numbers of these trees are A331965.
The semi-lone-child-avoiding version is A331993.

Programs

  • Mathematica
    ssb[n_]:=If[n==1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[ssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[ssb[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[0, 0]); for(n=2, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020

A198518 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^n)/(1+x^n) * x^n/n ).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 54, 102, 194, 375, 730, 1434, 2837, 5650, 11311, 22767, 46023, 93422, 190322, 389037, 797613, 1639878, 3380099, 6983484, 14459570, 29999618, 62357426, 129843590, 270807835, 565674584, 1183301266, 2478624060, 5198504694, 10916110768, 22948299899
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2011

Keywords

Comments

For n>=1, a(n) is the number of rooted trees (see A000081) with n non-root nodes where non-root nodes cannot have out-degree 1, see the note by David Callan and the example. Imposing the condition also for the root node gives A001678. - Joerg Arndt, Jun 28 2014
Compare definition to G(x) = exp( Sum_{n>=1} G(x^n)*x^n/n ), where G(x) is the g.f. of A000081, the number of rooted trees with n nodes.
Number of forests of lone-child-avoiding rooted trees with n unlabeled vertices. - Gus Wiseman, Feb 03 2020

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 16*x^7 + 29*x^8 +...
where
log(A(x)) = A(x)/(1+x)*x + A(x^2)/(1+x^2)*x^2/2 + A(x^3)/(1+x^3)*x^3/3 +...
The coefficients in A(x)/(1+x) begin:
[1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, ...]
(this is, up to offset, A001678),
from which g.f. A(x) may be generated by the Euler transform:
A(x) = 1/((1-x)^1*(1-x^2)^0*(1-x^3)^1*(1-x^4)^1*(1-x^5)^2*(1-x^6)^3*(1-x^7)^6*(1-x^8)^10*(1-x^9)^19*(1-x^10)^35*...).
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(6) = 9 rooted trees with 6 non-root nodes as described in the comment are:
:           level sequence       out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 3 3 2 ]    [ 1 2 3 . . . . ]
:  O--o--o--o
:        .--o
:        .--o
:     .--o
:
:     2:  [ 0 1 2 3 3 2 2 ]    [ 1 3 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:     .--o
:
:     3:  [ 0 1 2 3 3 2 1 ]    [ 2 2 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:  .--o
:
:     4:  [ 0 1 2 2 2 2 2 ]    [ 1 5 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:     .--o
:
:     5:  [ 0 1 2 2 2 2 1 ]    [ 2 4 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:  .--o
:
:     6:  [ 0 1 2 2 2 1 1 ]    [ 3 3 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:  .--o
:  .--o
:
:     7:  [ 0 1 2 2 1 2 2 ]    [ 2 2 . . 2 . . ]
:  O--o--o
:     .--o
:  .--o--o
:     .--o
:
:     8:  [ 0 1 2 2 1 1 1 ]    [ 4 2 . . . . . ]
:  O--o--o
:     .--o
:  .--o
:  .--o
:  .--o
:
:     9:  [ 0 1 1 1 1 1 1 ]    [ 6 . . . . . . ]
:  O--o
:  .--o
:  .--o
:  .--o
:  .--o
:  .--o
(End)
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(0) = 1 through a(6) = 9 rooted trees with n + 1 nodes where non-root vertices cannot have out-degree 1:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)
                ((oo))  ((ooo))  ((oooo))   ((ooooo))
                        (o(oo))  (o(ooo))   (o(oooo))
                                 (oo(oo))   (oo(ooo))
                                 ((o(oo)))  (ooo(oo))
                                            ((o(ooo)))
                                            ((oo)(oo))
                                            ((oo(oo)))
                                            (o(o(oo)))
(End)
		

Crossrefs

The labeled version is A254382.
Unlabeled rooted trees are A000081.
Lone-child-avoiding rooted trees are A001678(n+1).
Topologically series-reduced rooted trees are A001679.
Labeled lone-child-avoiding rooted trees are A060356.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) b(n):= `if`(n=0, 1, a(n)-b(n-1)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
           d*b(d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 02 2014
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, a[n] - b[n-1]];
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*b[d-1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],FreeQ[Z@@#,{}]&]],{n,10}] (* _Gus Wiseman, Jan 22 2020 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1+x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)}

Formula

Euler transform of coefficients in A(x)/(1+x), where g.f. A(x) = Sum_{n>=0} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711..., c = 1.3437262442171062526771597... . - Vaclav Kotesovec, Sep 03 2014
a(n) = A001678(n + 1) + A001678(n + 2). - Gus Wiseman, Jan 22 2020
Euler transform of A001678(n + 1). - Gus Wiseman, Feb 03 2020

A331936 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex (semi-achirality).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 144, 148, 152, 162, 169, 172, 178, 184, 192, 196, 202, 206, 208, 212, 214, 216, 224, 243, 244, 256, 262, 288
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

First differs from A331873 in lacking 69, the Matula-Goebel number of the tree ((o)((o)(o))).
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of 1, 2, and all numbers equal to a power of 2 (other than 1) times a power of prime(j) for some j > 1 already in the sequence.

Examples

			The sequence of rooted trees ranked by this sequence together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  46: (o((o)(o)))
  48: (oooo(o))
  49: ((oo)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              52: {1,1,6}            152: {1,1,1,8}
    2: {1}             54: {1,2,2,2}          162: {1,2,2,2,2}
    4: {1,1}           56: {1,1,1,4}          169: {6,6}
    6: {1,2}           64: {1,1,1,1,1,1}      172: {1,1,14}
    8: {1,1,1}         72: {1,1,1,2,2}        178: {1,24}
    9: {2,2}           74: {1,12}             184: {1,1,1,9}
   12: {1,1,2}         76: {1,1,8}            192: {1,1,1,1,1,1,2}
   14: {1,4}           81: {2,2,2,2}          196: {1,1,4,4}
   16: {1,1,1,1}       86: {1,14}             202: {1,26}
   18: {1,2,2}         92: {1,1,9}            206: {1,27}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      208: {1,1,1,1,6}
   26: {1,6}           98: {1,4,4}            212: {1,1,16}
   27: {2,2,2}        104: {1,1,1,6}          214: {1,28}
   28: {1,1,4}        106: {1,16}             216: {1,1,1,2,2,2}
   32: {1,1,1,1,1}    108: {1,1,2,2,2}        224: {1,1,1,1,1,4}
   36: {1,1,2,2}      112: {1,1,1,1,4}        243: {2,2,2,2,2}
   38: {1,8}          122: {1,18}             244: {1,1,18}
   46: {1,9}          128: {1,1,1,1,1,1,1}    256: {1,1,1,1,1,1,1,1}
   48: {1,1,1,1,2}    144: {1,1,1,1,2,2}      262: {1,32}
   49: {4,4}          148: {1,1,12}           288: {1,1,1,1,1,2,2}
		

Crossrefs

A superset of A000079.
The non-lone-child-avoiding version is A320230.
The non-semi version is A320269.
These trees are counted by A331933.
Not requiring semi-achirality gives A331935.
The fully-achiral case is A331992.
Achiral trees are counted by A003238.
Numbers with at most one distinct odd prime factor are A070776.
Matula-Goebel numbers of achiral rooted trees are A214577.
Matula-Goebel numbers of semi-identity trees are A306202.
Numbers S with at most one distinct prime index in S are A331912.

Programs

  • Mathematica
    msQ[n_]:=n<=2||!PrimeQ[n]&&Length[DeleteCases[FactorInteger[n],{2,_}]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],msQ]

Formula

Intersection of A320230 and A331935.

A318231 Number of inequivalent leaf-colorings of series-reduced rooted trees with n nodes.

Original entry on oeis.org

1, 0, 2, 3, 9, 23, 73, 229, 796, 2891, 11118, 44695, 187825, 820320, 3716501, 17413308, 84209071, 419461933, 2148673503, 11301526295, 60956491070, 336744177291, 1903317319015, 10995856040076, 64873456288903, 390544727861462, 2397255454976268, 14993279955728851
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Comments

In a series-reduced rooted tree, every non-leaf node has at least two branches.

Examples

			Inequivalent representatives of the a(6) = 23 leaf-colorings:
  (11(11))  (1(111))  (11111)
  (11(12))  (1(112))  (11112)
  (11(22))  (1(122))  (11122)
  (11(23))  (1(123))  (11123)
  (12(11))  (1(222))  (11223)
  (12(12))  (1(223))  (11234)
  (12(13))  (1(234))  (12345)
  (12(33))
  (12(34))
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(concat(v[1..n-2], [0]))), n-1 )); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 11 2020

A331681 One, two, and all numbers of the form 2^k * prime(j) where k > 0 and j already belongs to the sequence.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 24, 26, 28, 32, 38, 48, 52, 56, 64, 74, 76, 86, 96, 104, 106, 112, 128, 148, 152, 172, 178, 192, 202, 208, 212, 214, 224, 256, 262, 296, 304, 326, 344, 356, 384, 404, 416, 424, 428, 446, 448, 478, 512, 524, 526, 592, 608, 622, 652
Offset: 1

Views

Author

Gus Wiseman, Jan 26 2020

Keywords

Comments

Also Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted semi-identity trees. A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct. Note that these conditions together imply that there is at most one non-leaf branch under any given vertex.
Also Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one non-leaf branch under any given vertex.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches (of the root), which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of all semi-lone-child-avoiding rooted trees with at most one non-leaf branch under any given vertex, together with their Matula-Goebel numbers, begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  32: (ooooo)
  38: (o(ooo))
  48: (oooo(o))
  52: (oo(o(o)))
  56: (ooo(oo))
  64: (oooooo)
  74: (o(oo(o)))
  76: (oo(ooo))
  86: (o(o(oo)))
		

Crossrefs

The enumeration of these trees by nodes is A324969 (essentially A000045).
The enumeration of these trees by leaves appears to be A090129(n + 1).
The (non-semi) lone-child-avoiding version is A331683.
Matula-Goebel numbers of rooted semi-identity trees are A306202.
Lone-child-avoiding locally disjoint rooted trees by leaves are A316697.
The set S of numbers with at most one prime index in S is A331784.
Matula-Goebel numbers of locally disjoint rooted trees are A316495.

Programs

  • Maple
    N:= 1000: # for terms <= N
    S:= {1,2}:
    with(queue):
    Q:= new(1,2):
    while not empty(Q) do
      r:= dequeue(Q);
      p:= ithprime(r);
      newS:= {seq(2^i*p,i=1..ilog2(N/p))} minus S;
      S:= S union newS;
      for s in newS do enqueue(Q,s) od:
    od:
    sort(convert(S,list)); # Robert Israel, Feb 05 2020
  • Mathematica
    uryQ[n_]:=n==1||MatchQ[FactorInteger[n],({{2,},{p,1}}/;uryQ[PrimePi[p]])|{{2,_}}];
    Select[Range[100],uryQ]

Formula

Intersection of A306202 (semi-identity), A316495 (locally disjoint), and A331935 (semi-lone-child-avoiding). - Gus Wiseman, Jun 09 2020

A331963 Matula-Goebel numbers of semi-lone-child-avoiding rooted identity trees.

Original entry on oeis.org

1, 2, 6, 26, 39, 78, 202, 303, 334, 501, 606, 794, 1002, 1191, 1313, 2171, 2382, 2462, 2626, 3693, 3939, 3998, 4342, 4486, 5161, 5997, 6513, 6729, 7162, 7386, 7878, 8914, 10322, 10743, 11994, 12178, 13026, 13371, 13458, 15483, 15866, 16003, 16867, 18267, 19286
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. It is an identity tree if the branches under any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime squarefree numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted identity trees together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    6: (o(o))
   26: (o(o(o)))
   39: ((o)(o(o)))
   78: (o(o)(o(o)))
  202: (o(o(o(o))))
  303: ((o)(o(o(o))))
  334: (o((o)(o(o))))
  501: ((o)((o)(o(o))))
  606: (o(o)(o(o(o))))
  794: (o(o(o)(o(o))))
		

Crossrefs

A subset of A276625 (MG-numbers of identity trees).
Not requiring an identity tree gives A331935.
The locally disjoint version is A331937.
These trees are counted by A331964.
The semi-identity case is A331994.
Matula-Goebel numbers of identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees are A331965.

Programs

  • Mathematica
    msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&And@@msiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msiQ]

Formula

Intersection of A276625 (identity trees) and A331935 (semi-lone-child-avoiding).

A320269 Matula-Goebel numbers of lone-child-avoiding rooted trees in which the non-leaf branches directly under any given node are all equal (semi-achirality).

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

First differs from A331871 in lacking 1589.
Lone-child-avoiding means there are no unary branchings.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
		

Crossrefs

The same-tree version is A291441.
Not requiring lone-child-avoidance gives A320230.
The enumeration of these trees by vertices is A320268.
The semi-lone-child-avoiding version is A331936.
If the non-leaf branches are all different instead of equal we get A331965.
The fully-achiral case is A331967.
Achiral rooted trees are counted by A003238.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    hmakQ[n_]:=And[!PrimeQ[n],SameQ@@DeleteCases[primeMS[n],1],And@@hmakQ/@primeMS[n]];Select[Range[1000],hmakQ[#]&]

Extensions

Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A330943 Matula-Goebel numbers of singleton-reduced rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 13, 14, 16, 18, 19, 21, 24, 26, 28, 32, 34, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 61, 63, 64, 68, 72, 73, 74, 76, 78, 82, 84, 86, 89, 91, 96, 98, 101, 102, 104, 106, 107, 108, 111, 112, 114, 117, 119, 122, 126, 128, 129, 131
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

These trees are counted by A330951.
A rooted tree is singleton-reduced if no non-leaf node has all singleton branches, where a rooted tree is a singleton if its root has degree 1.
The Matula-Goebel number of a rooted tree is the product of primes of the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.
A prime index of n is a number m such that prime(m) divides n. A number belongs to this sequence iff it is 1 or its prime indices all belong to this sequence but are not all prime.

Examples

			The sequence of all singleton-reduced rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   7: ((oo))
   8: (ooo)
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  19: ((ooo))
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  32: (ooooo)
  34: (o((oo)))
  36: (oo(o)(o))
  37: ((oo(o)))
		

Crossrefs

The series-reduced case is A291636.
Unlabeled rooted trees are counted by A000081.
Numbers whose prime indices are not all prime are A330945.
Singleton-reduced rooted trees are counted by A330951.
Singleton-reduced phylogenetic trees are A000311.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mgsingQ[n_]:=n==1||And@@mgsingQ/@primeMS[n]&&!And@@PrimeQ/@primeMS[n];
    Select[Range[100],mgsingQ]
Previous Showing 11-20 of 44 results. Next