cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A336496 Products of superfactorials (A000178).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 34560, 36864, 41472, 49152, 55296
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A317804 in having 34560, which is the first term with more than two distinct prime factors.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   48: {1,1,1,1,2}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

A001013 is the version for factorials, with complement A093373.
A181818 is the version for superprimorials, with complement A336426.
A336497 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178.
A174605 is the maximum prime multiplicity in A000178.
A303279 counts prime factors of superfactorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[1000],facsusing[Rest[Array[supfac,30]],#]!={}&]

A376561 Points of downward concavity in the sequence of perfect-powers (A001597).

Original entry on oeis.org

2, 5, 7, 13, 14, 18, 19, 21, 24, 25, 29, 30, 39, 40, 45, 51, 52, 56, 59, 66, 70, 71, 74, 87, 94, 101, 102, 108, 110, 112, 113, 119, 127, 135, 143, 144, 156, 157, 160, 161, 169, 178, 187, 196, 205, 206, 215, 224, 225, 234, 244, 263, 273, 283, 284, 293, 294, 304
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2024

Keywords

Comments

These are points at which the second differences are negative.
Perfect-powers (A001597) are numbers with a proper integer root.
Note that, for some sources, downward concavity is positive curvature.
From Robert Israel, Oct 31 2024: (Start)
The first case of two consecutive numbers in the sequence is a(4) = 13 and a(5) = 14.
The first case of three consecutive numbers is a(293) = 2735, a(294) = 2736, a(295) = 2737.
The first case of four consecutive numbers, if it exists, involves a(k) with k > 69755. (End)

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, ...
with first differences (A376559):
  1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, ...
with negative positions (A376561):
  2, 5, 7, 13, 14, 18, 19, 21, 24, 25, 29, 30, 39, 40, 45, 51, 52, 56, 59, 66, 70, ...
		

Crossrefs

The version for A000002 is A025505, complement A022297. See also A054354, A376604.
For first differences we have A053289, union A023055, firsts A376268, A376519.
For primes instead of perfect-powers we have A258026.
For upward concavity we have A376560 (probably the complement).
A000961 lists the prime-powers inclusive, exclusive A246655.
A001597 lists the perfect-powers.
A007916 lists the non-perfect-powers.
A112344 counts partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.
Second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Maple
    N:= 10^6: # to use perfect powers <= N
    P:= {seq(seq(i^m,i=2..floor(N^(1/m))), m=2 .. ilog2(N))}: nP:= nops(P):
    P:= sort(convert(P,list)):
    select(i -> 2*P[i] > P[i-1]+P[i+1], [$2..nP-1]); # Robert Israel, Oct 31 2024
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Join@@Position[Sign[Differences[Select[Range[1000],perpowQ],2]],-1]

A376588 Inflection and undulation points in the sequence of non-perfect-powers (A007916).

Original entry on oeis.org

3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2024

Keywords

Comments

These are points at which the second differences (A376562) are zero.
Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
with zeros at (A376588):
  3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, ...
		

Crossrefs

The version for A000002 is empty.
For first differences we had A375706, ones A375740, complement A375714.
Positions of zeros in A376562, complement A376589.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A305631 counts integer partitions into non-perfect-powers, factorizations A322452.
A333254 gives run-lengths of differences between consecutive primes.
For non-perfect-powers: A375706 (first differences), A376562 (second differences), A376589 (nonzero curvature).
For second differences: A064113 (prime), A376602 (composite), {} (perfect-power), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power inclusive), A376600 (non-prime-power inclusive).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Join@@Position[Differences[Select[Range[100],radQ],2],0]

A376589 Points of nonzero curvature in the sequence of non-perfect-powers (A007916).

Original entry on oeis.org

1, 2, 4, 5, 10, 11, 18, 20, 23, 24, 26, 27, 38, 39, 52, 53, 68, 69, 86, 87, 106, 107, 109, 110, 111, 112, 126, 127, 150, 151, 176, 177, 195, 196, 203, 204, 220, 221, 232, 233, 264, 265, 298, 299, 316, 317, 333, 334, 371, 372, 411, 412, 453, 454, 480, 481, 496
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2024

Keywords

Comments

These are points at which the second differences (A376562) are nonzero.
Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
with nonzeros at (A376589):
  1, 2, 4, 5, 10, 11, 18, 20, 23, 24, 26, 27, 38, 39, 52, 53, 68, 69, 86, 87, ...
		

Crossrefs

For first differences we had A375706, ones A375740, complement A375714.
These are the positions of nonzeros in A376562, complement A376588.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A305631 counts integer partitions into non-perfect-powers, factorizations A322452.
For non-perfect-powers: A375706 (first differences), A376562 (second differences), A376588 (inflection and undulation points).
For second differences: A064113 (prime), A376602 (composite), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Join@@Position[Sign[Differences[Select[Range[1000],radQ],2]],1|-1]

A322436 Number of pairs of factorizations of n into factors > 1 where no factor of the second properly divides any factor of the first.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 8, 1, 3, 3, 11, 1, 8, 1, 8, 3, 3, 1, 18, 3, 3, 5, 8, 1, 12, 1, 15, 3, 3, 3, 31, 1, 3, 3, 18, 1, 12, 1, 8, 8, 3, 1, 39, 3, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 42, 1, 3, 8, 33, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 39, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(12) = 8 pairs of factorizations:
  (2*2*3)|(2*2*3)
  (2*2*3)|(2*6)
  (2*2*3)|(3*4)
  (2*2*3)|(12)
    (2*6)|(12)
    (3*4)|(3*4)
    (3*4)|(12)
     (12)|(12)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    divpropQ[x_,y_]:=And[x!=y,Divisible[x,y]];
    Table[Length[Select[Tuples[facs[n],2],!Or@@divpropQ@@@Tuples[#]&]],{n,100}]

A304328 a(n) = n/(largest perfect power divisor of n).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Comments

Not all terms are squarefree numbers; for example, a(500) = 4.

Crossrefs

Programs

  • Mathematica
    Table[n/Last[Select[Divisors[n],#===1||GCD@@FactorInteger[#][[All,2]]>1&]],{n,100}]
  • PARI
    a(n)={my(m=1); fordiv(n, d, if(ispower(d), m=max(m,d))); n/m} \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) * A203025(n) = n.

A336497 Numbers that cannot be written as a product of superfactorials A000178.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A336426 in having 360.

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}        22: {1,5}        39: {2,6}
     5: {3}        23: {9}          40: {1,1,1,3}
     6: {1,2}      25: {3,3}        41: {13}
     7: {4}        26: {1,6}        42: {1,2,4}
     9: {2,2}      27: {2,2,2}      43: {14}
    10: {1,3}      28: {1,1,4}      44: {1,1,5}
    11: {5}        29: {10}         45: {2,2,3}
    13: {6}        30: {1,2,3}      46: {1,9}
    14: {1,4}      31: {11}         47: {15}
    15: {2,3}      33: {2,5}        49: {4,4}
    17: {7}        34: {1,7}        50: {1,3,3}
    18: {1,2,2}    35: {3,4}        51: {2,7}
    19: {8}        36: {1,1,2,2}    52: {1,1,6}
    20: {1,1,3}    37: {12}         53: {16}
    21: {2,4}      38: {1,8}        54: {1,2,2,2}
		

Crossrefs

A093373 is the version for factorials, with complement A001013.
A336426 is the version for superprimorials, with complement A181818.
A336496 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178(n).
A174605 is the maximum prime multiplicity in A000178(n).
A303279 counts prime factors (with multiplicity) of superprimorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[100],facsusing[Rest[Array[supfac,30]],#]=={}&]

A322453 Number of factorizations of n into factors > 1 using only primes and perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 5, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

First differs from A000688 at a(36) = 5, A000688(36) = 4.
Terms in this sequence only depend on the prime signature of n. - David A. Corneth, Dec 26 2018

Examples

			The a(144) = 13 factorizations:
  (144),
  (4*36), (9*16),
  (2*2*36), (2*8*9), (3*3*16), (4*4*9),
  (2*2*4*9), (2*3*3*8), (3*3*4*4),
  (2*2*2*2*9), (2*2*3*3*4),
  (2*2*2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    perpowQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1;
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[pfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],Or[PrimeQ[#],perpowQ[#]]&]}]];
    Table[Length[pfacs[n]],{n,100}]
  • PARI
    A322453(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(ispower(d)||isprime(d)), s += A322453(n/d, d))); (s)); \\ Antti Karttunen, Dec 26 2018

Extensions

More terms from Antti Karttunen, Dec 24 2018

A336736 Number of factorizations of n whose distinct factors have disjoint prime signatures.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 5, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The a(n) factorizations for n = 36, 360, 720, 192, 288:
  (36)     (360)    (720)     (192)      (288)
  (6*6)    (5*72)   (8*90)    (3*64)     (8*36)
  (2*2*9)  (8*45)   (9*80)    (4*48)     (9*32)
  (3*3*4)  (9*40)   (10*72)   (6*32)     (16*18)
           (10*36)  (16*45)   (12*16)    (2*144)
           (5*8*9)  (5*144)   (3*8*8)    (6*6*8)
                    (5*9*16)  (4*6*8)    (2*2*72)
                    (8*9*10)  (3*4*16)   (2*9*16)
                              (3*4*4*4)  (3*3*32)
                                         (2*2*8*9)
                                         (3*3*4*8)
                                         (2*2*2*36)
                                         (2*2*2*2*2*9)
		

Crossrefs

A001055 counts factorizations.
A118914 is sorted prime signature.
A124010 is prime signature.
A336737 counts factorizations with intersecting signatures.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
    Table[Length[Select[facs[n],stableQ[#,Intersection[prisig[#1],prisig[#2]]!={}&]&]],{n,100}]

A376679 Number of strict integer factorizations of n into nonsquarefree factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2024

Keywords

Examples

			The a(3456) = 28 factorizations are:
  (4*8*9*12)  (4*9*96)    (36*96)   (3456)
              (8*9*48)    (4*864)
              (4*12*72)   (48*72)
              (4*16*54)   (54*64)
              (4*18*48)   (8*432)
              (4*24*36)   (9*384)
              (4*27*32)   (12*288)
              (4*8*108)   (16*216)
              (8*12*36)   (18*192)
              (8*16*27)   (24*144)
              (8*18*24)   (27*128)
              (9*12*32)   (32*108)
              (9*16*24)
              (12*16*18)
		

Crossrefs

Positions of zeros are A005117 (squarefree numbers), complement A013929.
For squarefree instead of nonsquarefree we have A050326, non-strict A050320.
For prime-powers we have A050361, non-strict A000688.
For nonprime numbers we have A050372, non-strict A050370.
The version for partitions is A256012, non-strict A114374.
For perfect-powers we have A323090, non-strict A294068.
The non-strict version is A376657.
Nonsquarefree numbers:
- A078147 (first differences)
- A376593 (second differences)
- A376594 (inflections and undulations)
- A376595 (nonzero curvature)
A000040 lists the prime numbers, differences A001223.
A001055 counts integer factorizations, strict A045778.
A005117 lists squarefree numbers, differences A076259.
A317829 counts factorizations of superprimorials, strict A337069.

Programs

  • JavaScript
    function nextNonSquareFree(val){val+=1;for(let i=2;i*i<=val;i+=1){if(val%i==0&&val%(i*i)==0){return val}}return nextNonSquareFree(val)}function strictFactorCount(val,maxFactor){if(val==1){return 1}let sum=0;while(maxFactorDominic McCarty, Oct 19 2024
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@#&&NoneTrue[#,SquareFreeQ]&]],{n,100}] (* corrected by Gus Wiseman, Jun 27 2025 *)
Previous Showing 11-20 of 24 results. Next