A317089
Numbers whose prime factors span an initial interval of prime numbers and whose prime multiplicities span an initial interval of positive integers.
Original entry on oeis.org
2, 6, 12, 18, 30, 60, 90, 150, 180, 210, 300, 360, 420, 450, 540, 600, 630, 1050, 1260, 1350, 1470, 1500, 2100, 2250, 2310, 2520, 2940, 3150, 3780, 4200, 4410, 4620, 5880, 6300, 6930, 7350, 8820, 9450, 10500, 11550, 12600, 13230, 13860, 14700, 15750, 16170
Offset: 1
The sequence of rows of A296150 indexed by the terms of this sequence begins: (1), (21), (211), (221), (321), (3211), (3221), (3321), (32211), (4321), (33211), (322111), (43211).
-
normalQ[m_]:=Union[m]==Range[Max[m]];
Select[Range[10000],And[normalQ[PrimePi/@FactorInteger[#][[All,1]]],normalQ[FactorInteger[#][[All,2]]]]&]
-
ok(n)={my(f=factor(n), p=f[,1], e=vecsort(f[,2],,8)); n > 1 && #p==primepi(p[#p]) && #e==e[#e]} \\ Andrew Howroyd, Aug 26 2018
A321648
Number of permutations of the conjugate of the integer partition with Heinz number n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 3, 1, 1, 2, 1, 3, 6, 5, 1, 2, 1, 6, 1, 4, 1, 6, 1, 1, 10, 7, 4, 2, 1, 8, 15, 3, 1, 12, 1, 5, 3, 9, 1, 2, 1, 3, 21, 6, 1, 2, 10, 4, 28, 10, 1, 6, 1, 11, 6, 1, 20, 20, 1, 7, 36, 12, 1, 2, 1, 12, 3, 8, 5, 30, 1, 3, 1, 13
Offset: 1
The a(42) = 12 permutations: (3211), (3121), (3112), (2311), (2131), (2113), (1321), (1312), (1231), (1213), (1132), (1123).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Permutations[conj[primeMS[n]]]],{n,50}]
-
A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
A321648(n) = A008480(A122111(n)); \\ Antti Karttunen, Dec 23 2018
A334442
Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 3, 4, 1, 1, 5
Offset: 0
The sequence of all partitions begins:
() (2,3) (1,1,1,1,2) (1,1,1,2,2)
(1) (1,1,3) (1,1,1,1,1,1) (1,1,1,1,1,2)
(2) (1,2,2) (7) (1,1,1,1,1,1,1)
(1,1) (1,1,1,2) (1,6) (8)
(3) (1,1,1,1,1) (2,5) (1,7)
(1,2) (6) (3,4) (2,6)
(1,1,1) (1,5) (1,1,5) (3,5)
(4) (2,4) (1,2,4) (4,4)
(1,3) (3,3) (1,3,3) (1,1,6)
(2,2) (1,1,4) (2,2,3) (1,2,5)
(1,1,2) (1,2,3) (1,1,1,4) (1,3,4)
(1,1,1,1) (2,2,2) (1,1,2,3) (2,2,4)
(5) (1,1,1,3) (1,2,2,2) (2,3,3)
(1,4) (1,1,2,2) (1,1,1,1,3) (1,1,1,5)
This sequence can also be interpreted as the following triangle:
0
(1)
(2)(11)
(3)(12)(111)
(4)(13)(22)(112)(1111)
(5)(14)(23)(113)(122)(1112)(11111)
Taking Heinz numbers (A334438) gives:
1
2
3 4
5 6 8
7 10 9 12 16
11 14 15 20 18 24 32
13 22 21 25 28 30 27 40 36 48 64
17 26 33 35 44 42 50 45 56 60 54 80 72 96 128
The version for reversed partitions is
A334301.
The version for colex instead of revlex is
A334302.
Taking Heinz numbers gives
A334438.
The version with rows reversed is
A334439.
Lexicographically ordered reversed partitions are
A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are
A036036.
Partitions in increasing-length colex order (sum/length/colex) are
A036037.
Reverse-lexicographically ordered partitions are
A080577.
Lexicographically ordered partitions are
A193073.
Partitions in colexicographic order (sum/colex) are
A211992.
Sorting partitions by Heinz number gives
A296150.
Cf.
A026791,
A112798,
A124734,
A129129,
A185974,
A228100,
A228531,
A296774,
A334433,
A334435,
A334436.
-
revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
-
A334442_row(n)=vecsort(partitions(n),p->concat(#p,-Vecrev(p))) \\ Rows of triangle defined in EXAMPLE (all partitions of n). Wrap into [Vec(p)|p<-...] to avoid "Vecsmall". - M. F. Hasler, May 14 2020
A352872
Numbers whose weakly increasing prime indices y have a fixed point y(i) = i.
Original entry on oeis.org
2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114
Offset: 1
The terms together with their prime indices begin:
2: {1} 28: {1,1,4} 56: {1,1,1,4}
4: {1,1} 30: {1,2,3} 58: {1,10}
6: {1,2} 32: {1,1,1,1,1} 60: {1,1,2,3}
8: {1,1,1} 34: {1,7} 62: {1,11}
9: {2,2} 36: {1,1,2,2} 63: {2,2,4}
10: {1,3} 38: {1,8} 64: {1,1,1,1,1,1}
12: {1,1,2} 40: {1,1,1,3} 66: {1,2,5}
14: {1,4} 42: {1,2,4} 68: {1,1,7}
16: {1,1,1,1} 44: {1,1,5} 70: {1,3,4}
18: {1,2,2} 45: {2,2,3} 72: {1,1,1,2,2}
20: {1,1,3} 46: {1,9} 74: {1,12}
22: {1,5} 48: {1,1,1,1,2} 75: {2,3,3}
24: {1,1,1,2} 50: {1,3,3} 76: {1,1,8}
26: {1,6} 52: {1,1,6} 78: {1,2,6}
27: {2,2,2} 54: {1,2,2,2} 80: {1,1,1,1,3}
For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
* = unproved
These are the nonzero positions in
A352822.
A114088 counts partitions by excedances.
A122111 represents partition conjugation using Heinz numbers.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.
Cf.
A062457,
A064410,
A065770,
A093641,
A257990,
A325187,
A342192,
A352486,
A352823,
A352824,
A352825,
A352831,
A352832.
-
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>0&]
A353867
Heinz numbers of integer partitions where every partial run (consecutive constant subsequence) has a different sum, and these sums include every integer from 0 to the greatest part.
Original entry on oeis.org
1, 2, 4, 6, 8, 16, 20, 30, 32, 56, 64, 90, 128, 140, 176, 210, 256, 416, 512, 616, 990, 1024, 1088, 1540, 2048, 2288, 2310, 2432, 2970, 4096, 4950, 5888, 7072, 7700, 8008, 8192, 11550, 12870, 14848, 16384, 20020, 20672, 30030, 31744, 32768, 38896, 50490, 55936
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
16: {1,1,1,1}
20: {1,1,3}
30: {1,2,3}
32: {1,1,1,1,1}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
90: {1,2,2,3}
128: {1,1,1,1,1,1,1}
140: {1,1,3,4}
176: {1,1,1,1,5}
210: {1,2,3,4}
256: {1,1,1,1,1,1,1,1}
These partitions are counted by
A353865.
A073093 counts prime-power divisors.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by
A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.
Cf.
A018818,
A181819,
A182857,
A304442,
A316413,
A325862,
A353835,
A353838,
A353839,
A353861,
A353931.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
norqQ[m_]:=Sort[m]==Range[0,Max[m]];
msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
Select[Range[1000],norqQ[Total/@Select[msubs[primeMS[#]],SameQ@@#&]]&]
A372436
Numbers whose binary indices and prime indices have the same maximum.
Original entry on oeis.org
3, 5, 14, 22, 39, 52, 68, 85, 102, 119, 133, 152, 171, 190, 209, 228, 247, 276, 299, 322, 345, 368, 391, 414, 437, 460, 483, 506, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 870, 928, 957, 986, 1015, 1054, 1085, 1116, 1178, 1209, 1240, 1302
Offset: 1
The binary indices of 345 are {1,4,5,7,9}, and the prime indices are {2,3,9}. Both have maximum 9, so 345 is in the sequence.
The terms together with their prime indices begin:
3: {2}
5: {3}
14: {1,4}
22: {1,5}
39: {2,6}
52: {1,1,6}
68: {1,1,7}
85: {3,7}
102: {1,2,7}
119: {4,7}
133: {4,8}
152: {1,1,1,8}
171: {2,2,8}
The terms together with their binary expansions and binary indices begin:
3: 11 ~ {1,2}
5: 101 ~ {1,3}
14: 1110 ~ {2,3,4}
22: 10110 ~ {2,3,5}
39: 100111 ~ {1,2,3,6}
52: 110100 ~ {3,5,6}
68: 1000100 ~ {3,7}
85: 1010101 ~ {1,3,5,7}
102: 1100110 ~ {2,3,6,7}
119: 1110111 ~ {1,2,3,5,6,7}
133: 10000101 ~ {1,3,8}
152: 10011000 ~ {4,5,8}
171: 10101011 ~ {1,2,4,6,8}
For length instead of maximum we have
A071814.
For sum instead of maximum we have
A372427.
Positions of zeros in
A372442, for minimum instead of maximum
A372437.
A003963 gives product of prime indices.
A070939 gives length of binary expansion.
Cf.
A000720,
A014499,
A030101,
A066099,
A096111,
A304818,
A355536,
A359401,
A359402,
A372428-
A372433,
A372441.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max[prix[#]]==Max[bix[#]]&]
A375128
Irregular triangle read by rows where row n lists the minima of maximal strictly increasing runs in the weakly increasing prime indices of n.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 4, 1, 1, 1, 2, 2, 1, 5, 1, 1, 6, 1, 2, 1, 1, 1, 1, 7, 1, 2, 8, 1, 1, 2, 1, 9, 1, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 10, 1, 11, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 12, 1, 2, 1, 1, 1, 13, 1, 14, 1, 1, 2, 2, 1, 15, 1, 1, 1, 1, 4, 4, 1, 3, 2, 1, 1, 16
Offset: 1
The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), which is row 540.
Triangle begins:
1:
2: 1
3: 2
4: 1 1
5: 3
6: 1
7: 4
8: 1 1 1
9: 2 2
10: 1
11: 5
12: 1 1
13: 6
14: 1
15: 2
16: 1 1 1 1
Cf.
A034296,
A141199,
A218482,
A279790,
A320324,
A333213,
A358836,
A374634,
A374700,
A374758,
A375133.
-
Table[If[n==1,{},First/@Split[Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]],Less]],{n,100}]
A316314
Number of distinct nonempty-subset-averages of the integer partition with Heinz number n.
Original entry on oeis.org
0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 5, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 8, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 7, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 8, 3, 3, 3, 5, 1, 7, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5, 1, 7, 1, 5, 5
Offset: 1
The a(42) = 7 subset-averages of (4,2,1) are 1, 3/2, 2, 7/3, 5/2, 3, 4.
The a(72) = 7 subset-averages of (2,2,1,1,1) are 1, 5/4, 4/3, 7/5, 3/2, 5/3, 2.
Cf.
A032302,
A056239,
A108917,
A122768,
A275972,
A276024,
A296150,
A299701,
A299702,
A301899,
A301957,
A304793,
A316313.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Union[Mean/@Rest[Subsets[primeMS[n]]]]],{n,100}]
-
up_to = 65537;
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
v056239 = vector(up_to,n,A056239(n));
A316314(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s = v056239[d]/bigomega(d)), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 23 2018
A372428
Sum of binary indices of n minus sum of prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 2, 4, 5, 1, -1, 2, 0, 3, 3, 4, 2, 4, 4, 4, 6, 6, 3, 8, 4, 1, 0, 0, 2, 3, -2, 2, 4, 4, -2, 5, -1, 6, 7, 5, 1, 5, 4, 6, 5, 6, -1, 9, 9, 8, 6, 6, 1, 11, 1, 8, 13, 1, -1, 1, -9, 1, 0, 4, -7, 4, -9, 0, 6, 4, 6, 7, -5, 5, 5, 0, -8
Offset: 1
The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so a(65) = 8 - 9 = -1.
For minimum instead of sum we have
A372437.
A003963 gives product of prime indices.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Total[bix[n]]-Total[prix[n]],{n,100}]
-
from itertools import count, islice
from sympy import sieve, factorint
def a_gen():
for n in count(1):
b = sum((i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1')
p = sum(sieve.search(i)[0] for i in factorint(n, multiple=True))
yield(b-p)
A372428_list = list(islice(a_gen(), 83)) # John Tyler Rascoe, May 04 2024
-
from sympy import primepi, factorint
def A372428(n): return int(sum(i for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')-sum(primepi(p)*e for p, e in factorint(n).items())) # Chai Wah Wu, Oct 18 2024
A316431
Least common multiple divided by greatest common divisor of the integer partition with Heinz number n > 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 6, 1, 1, 2, 1, 3, 2, 5, 1, 2, 1, 6, 1, 4, 1, 6, 1, 1, 10, 7, 12, 2, 1, 8, 3, 3, 1, 4, 1, 5, 6, 9, 1, 2, 1, 3, 14, 6, 1, 2, 15, 4, 4, 10, 1, 6, 1, 11, 2, 1, 2, 10, 1, 7, 18, 12, 1, 2, 1, 12, 6, 8, 20, 6, 1, 3, 1, 13, 1, 4, 21, 14, 5, 5, 1, 6, 6, 9, 22, 15, 24, 2, 1, 4, 10, 3, 1, 14, 1, 6, 12
Offset: 2
63 is the Heinz number of (4,2,2), which has LCM 4 and GCD 2, so a(63) = 4/2 = 2.
91 is the Heinz number of (6,4), which has LCM 12 and GCD 2, so a(91) = 12/2 = 6.
-
Table[With[{pms=Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]},LCM@@pms/GCD@@pms],{n,2,100}]
-
A316431(n) = if(1==n,1,my(pis = apply(p -> primepi(p), factor(n)[, 1]~)); lcm(pis)/gcd(pis)); \\ Antti Karttunen, Sep 06 2018
Comments