cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A297293 Solution (c(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

2, 8, 10, 18, 24, 26, 33, 35, 42, 45, 54, 56, 63, 66, 74, 76, 82, 88, 94, 96, 102, 105, 114, 116, 123, 125, 134, 136, 142, 145, 154, 156, 162, 168, 170, 178, 180, 186, 194, 196, 202, 208, 214, 216, 222, 225, 234, 236, 243, 246, 254, 256, 262, 265, 274, 276
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively:
a(n) = least new;
b(n) = least new > = a(n) + 2;
c(n) = a(n) + b(n) - 2;
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Conjectures: for n >= 0,
0 <= 5*n + 4 - 2*a(n) <= 5,
0 <= 5*n + 8 - 2*b(n) <= 4,
0 <= c(n) - 5n <= 4.

Examples

			n:   0   1   2   3   4   5   6   7   8   9  10
a:   1   4   5   9  12  13  16  17  21  27  28
b:   3   6   7  11  14  15  19  20  23  25  29
c:   2   8  10  18  24  26  33  35  42  45  54
		

Crossrefs

Programs

  • Mathematica
    z = 300;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = b = c = {};
    Do[{AppendTo[a,
        mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]],
       AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + 2]],
       AppendTo[c, Last[a] + Last[b] - 2]}, {z}];
    Take[a, 100]  (* A297291 *)
    Take[b, 100]  (* A297292 *)
    Take[c, 100]  (* A297293 *)
    (* Peter J. C. Moses, Apr 23 2018 *)

A297465 Solution (b(n)) of the system of 4 complementary equations in Comments.

Original entry on oeis.org

2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 35, 39, 42, 45, 49, 52, 55, 59, 62, 65, 69, 72, 76, 79, 82, 85, 89, 92, 95, 99, 102, 105, 109, 112, 115, 119, 122, 125, 129, 132, 135, 139, 142, 145, 149, 152, 155, 159, 162, 166, 169, 172, 175, 179, 182, 185, 189, 192
Offset: 0

Views

Author

Clark Kimberling, Apr 22 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = a(n) + b(n) + c(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 10n - 6 - 3 a(n) <= 2
0 <= 10n - 2 - 3 b(n) <= 3
0 <= 10n +1 - 3 c(n) <= 3
0 <= 10n - 3 - d(n) <= 2
***
The sequences a,b,c,d partition the positive integers. The sequence d can be called the "anti-tribonacci sequence"; viz., if sequences a and b are defined as above, and c(n) is defined by c(n) = a(n) + b(n), then the resulting system of 3 complementary sequences gives c = A036554, the "anti-Fibonacci sequence."

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    8   11   14   18   21   24   28   31
b:   2    5    9   12   15   19   22   25   29   32
c:   3    7   10   13   17   20   23   26   30   33
d:   6   16   27   36   46   57   66   75   87   96
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {}; AppendTo[d, Last[a] + Last[b] + Last[c]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[d, Last[a] + Last[b] + Last[c]]}, {z}];
    Take[a, 100]  (* A297464 *)
    Take[b, 100]  (* A297465 *)
    Take[c, 100]  (* A297466 *)
    Take[d, 100]  (* A265389 *)

A297466 Solution (c(n)) of the system of 4 complementary equations in Comments.

Original entry on oeis.org

3, 7, 10, 13, 17, 20, 23, 26, 30, 33, 37, 40, 43, 47, 50, 53, 56, 60, 63, 67, 70, 73, 77, 80, 83, 86, 90, 93, 97, 100, 103, 107, 110, 113, 116, 120, 123, 127, 130, 133, 137, 140, 143, 146, 150, 153, 157, 160, 163, 167, 170, 173, 176, 180, 183, 187, 190, 193
Offset: 0

Views

Author

Clark Kimberling, Apr 22 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = a(n) + b(n) + c(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 10n - 6 - 3 a(n) <= 2
0 <= 10n - 2 - 3 b(n) <= 3
0 <= 10n + 1 - 3 c(n) <= 3
0 <= 10n - 3 - d(n) <= 2
***
The sequences a,b,c,d partition the positive integers. The sequence d can be called the "anti-tribonacci sequence"; viz., if sequences a and b are defined as above, and c(n) is defined by c(n) = a(n) + b(n), then the resulting system of 3 complementary sequences gives c = A036554, the "anti-Fibonacci sequence."
The linear recurrence with signature (1,0,0,0,0,0,0,0,1,-1) and g.f. (3 + 4*x + 3*x^2 + 3*x^3 + 4*x^4 + 3*x^5 + 3*x^6 + 3*x^7 + 4*x^8)/(1 - x - x^9 + x^10) first differs from this sequence at a(67). - Georg Fischer, Jul 17 2025

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    8   11   14   18   21   24   28   31
b:   2    5    9   12   15   19   22   25   29   32
c:   3    7   10   13   17   20   23   26   30   33
d:   6   16   27   36   46   57   66   75   87   96
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {}; AppendTo[d, Last[a] + Last[b] + Last[c]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[d, Last[a] + Last[b] + Last[c]]}, {z}];
    Take[a, 100]  (* A297464 *)
    Take[b, 100]  (* A297465 *)
    Take[c, 100]  (* A297466 *)
    Take[d, 100]  (* A265389 *)

A298170 Solution (b(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

2, 6, 8, 11, 14, 19, 22, 24, 26, 30, 32, 38, 41, 42, 44, 49, 51, 54, 55, 59, 66, 69, 71, 72, 77, 83, 84, 86, 90, 92, 93, 96, 99, 101, 109, 112, 113, 116, 119, 121, 122, 130, 131, 138, 140, 143, 147, 151, 152, 154, 156, 158, 161, 162, 165, 170, 174, 181, 184
Offset: 0

Views

Author

Clark Kimberling, Apr 25 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new > = a(n) + n + 1;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67))
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1.
(The same limits occur in A298868 and A297469.)

Examples

			n:   0   1   2   3   4    5   6   7   8   9  10
a:   1   4   5   7   9   12  15  16  17  20  21
b:   2   6   8  11   14  19  22  24  26  30  32
c:   3  10  13  18   23  31  37  40  43  50  53
		

Crossrefs

Programs

  • Mathematica
    z=200;
    mex[list_,start_]:=(NestWhile[#+1&,start,MemberQ[list,#]&]);
    a={1};b={2};c={3};n=0;
    Do[{n++;
      AppendTo[a,mex[Flatten[{a,b,c}],If[Length[a]==0,1,Last[a]]]],
      AppendTo[b,mex[Flatten[{a,b,c}],Last[a]+n+1]],
      AppendTo[c,Last[a]+Last[b]]},{z}];
    Take[a,100] (* A297838 *)
    Take[b,100] (* A298170 *)
    Take[c,100] (* A298418 *)
    (* Peter J. C. Moses, Apr 23 2018 *)

A298418 Solution (c(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

3, 10, 13, 18, 23, 31, 37, 40, 43, 50, 53, 63, 68, 70, 73, 82, 85, 89, 91, 98, 111, 115, 118, 120, 129, 139, 141, 144, 150, 153, 155, 160, 164, 168, 183, 187, 189, 194, 198, 201, 203, 217, 219, 232, 235, 240, 247, 253, 255, 258, 261, 264, 268, 270, 275, 284
Offset: 0

Views

Author

Clark Kimberling, May 01 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new > = a(n) + n + 1;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67))
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1.
(The same limits occur in A298868 and A297469.)

Examples

			n:   0   1   2   3   4    5   6   7   8   9  10
a:   1   4   5   7   9   12  15  16  17  20  21
b:   2   6   8  11   14  19  22  24  26  30  32
c:   3  10  13  18   23  31  37  40  43  50  53
		

Crossrefs

Programs

  • Mathematica
    z=200;
    mex[list_,start_]:=(NestWhile[#+1&,start,MemberQ[list,#]&]);
    a={1};b={2};c={3};n=0;
    Do[{n++;
      AppendTo[a,mex[Flatten[{a,b,c}],If[Length[a]==0,1,Last[a]]]],
      AppendTo[b,mex[Flatten[{a,b,c}],Last[a]+n+1]],
      AppendTo[c,Last[a]+Last[b]]},{z}];
    Take[a,100] (* A297838 *)
    Take[b,100] (* A298170 *)
    Take[c,100] (* A298418 *)
    (* Peter J. C. Moses, Apr 23 2018 *)

A298869 Solution (b(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

2, 5, 7, 10, 12, 16, 20, 22, 25, 28, 31, 36, 38, 40, 43, 47, 50, 51, 56, 60, 63, 66, 68, 71, 76, 78, 81, 85, 86, 89, 91, 95, 99, 103, 106, 109, 110, 114, 117, 121, 124, 128, 133, 135, 137, 139, 142, 146, 148, 151, 154, 156, 159, 164, 167, 170, 174, 176, 178
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + n;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers. Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67));
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n -> 2x+1.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    6    8   11   14   15   17   19   21
b:   2    5    7   10   12   16   20   22   25   28
c:   3    9   13   18   23   30   35   39   44   49
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; n = 0;
    Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c}], a[[n]] + n]],
       AppendTo[c, Last[a] + Last[b]]}, {z}];
    Take[a, 100] (* A298868 *)
    Take[b, 100] (* A298869 *)
    Take[c, 100] (* A298870 *)
    (* Peter J. C. Moses, Apr 08 2018 *)

A298870 Solution (c(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

3, 9, 13, 18, 23, 30, 35, 39, 44, 49, 55, 62, 65, 69, 75, 80, 84, 88, 97, 102, 108, 112, 116, 123, 129, 132, 138, 143, 145, 150, 155, 162, 169, 175, 179, 183, 187, 193, 199, 204, 211, 218, 225, 228, 231, 235, 240, 246, 249, 255, 259, 263, 270, 277, 282, 288
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + n;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers. Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67))
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    6    8   11   14   15   17   19   21
b:   2    5    7   10   12   16   20   22   25   28
c:   3    9   13   18   23   30   35   39   44   49
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; n = 0;
    Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c}], a[[n]] + n]],
       AppendTo[c, Last[a] + Last[b]]}, {z}];
    Take[a, 100] (* A298868 *)
    Take[b, 100] (* A298869 *)
    Take[c, 100] (* A298870 *)
    (* Peter J. C. Moses, Apr 08 2018 *)

A298876 Solution (c(n)) of the system of 3 equations in Comments.

Original entry on oeis.org

3, 16, 27, 43, 60, 79, 100, 126, 153, 182, 213, 249, 289, 330, 373, 418, 465, 514, 565, 624, 683, 744, 807, 872, 939, 1008, 1082, 1157, 1234, 1313, 1394, 1477, 1562, 1652, 1746, 1841, 1938, 2037, 2138, 2241, 2346, 2453, 2562, 2673, 2786, 2904, 3023, 3147
Offset: 0

Views

Author

Clark Kimberling, Apr 19 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = a(n) + b(n-1);
c(n) = a(n) + 2 b(n);
where "least new k" means the least positive integer not yet placed.
***
Do these sequences a,b,c partition the positive integers? They differ from the corresponding partitioning sequences A298871, A298872, and A298872. For example, A298872(56) = 2139, whereas A298875(56) = 2138.
Differs from A298873 first at n=56. - Georg Fischer, Oct 10 2018

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    5    7    8    9   10   12   13   14
b:   2    6   11   18   26   35   45   57   70   84
c:   3   16   27   43   60   30   79  100  126  153
		

Crossrefs

Programs

  • Mathematica
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3};
    Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, Last[a] + Last[b]],
       AppendTo[c, Last[a] + 2 Last[b]]}, {z}];
    Take[a, 100]  (* A298874 *)
    Take[b, 100]  (* A298875 *)
    Take[c, 100]  (* A298876 *)

A299635 Solution (b(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

2, 5, 6, 7, 8, 11, 13, 15, 18, 20, 21, 24, 25, 27, 29, 31, 32, 33, 34, 35, 38, 39, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 59, 60, 63, 65, 69, 71, 72, 73, 75, 79, 80, 81, 82, 84, 85, 87, 91, 93, 96, 98, 99, 100, 105, 107, 109, 111, 113, 114, 116, 117, 119
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new k >= 2*b(n-1);
b(n) = least new k;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Let x = 11/6. Conjectures:
a(n) - 2*n*x = 0 for infinitely many n;
b(n) - n*x = 0 for infinitely many n;
c(n) - 3*n*x = 0 for infinitely many n;
(a(n) - 2*n*x) is unbounded below and above;
(b(n) - n*x) is unbounded below and above;
(c(n) - 3*n*x) is unbounded below and above;
***
Let d(a), d(b), d(c) denote the respective difference sequences. Conjectures:
12 occurs infinitely many times in d(a); 6 occurs infinitely many times in d(b);
2 occurs infinitely many times in d(c).

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4   10   12   14   17   23   26   30   37
b:   2    5    6    7    8   11   13   15   18   20
c:   3    9   16   19   22   28   36   41   48   57
		

Crossrefs

Programs

  • Mathematica
    z = 1000;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]];
    Do[{
      AppendTo[a, mex[Flatten[{a, b, c}], 2 Last[b]]],
      AppendTo[b, mex[Flatten[{a, b, c}], 1]],
      AppendTo[c, Last[a] + Last[b]]}, {z}];
    Take[a, 100] (* A299634 *)
    Take[b, 100] (* A299635 *)
    Take[c, 100] (* A299636 *)
    (* Peter J. C. Moses, Apr 08 2018 *)

A299636 Solution (c(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

3, 9, 16, 19, 22, 28, 36, 41, 48, 57, 61, 66, 74, 77, 83, 89, 94, 97, 101, 103, 108, 115, 121, 130, 133, 136, 139, 146, 154, 157, 161, 166, 171, 178, 183, 191, 200, 209, 214, 217, 222, 229, 238, 241, 244, 248, 253, 257, 265, 275, 282, 290, 295, 298, 306, 317
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new k >= 2*b(n-1);
b(n) = least new k;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Let x = 11/6. Conjectures:
a(n) - 2*n*x = 0 for infinitely many n;
b(n) - n*x = 0 for infinitely many n;
c(n) - 3*n*x = 0 for infinitely many n;
(a(n) - 2*n*x) is unbounded below and above;
(b(n) - n*x) is unbounded below and above;
(c(n) - 3*n*x) is unbounded below and above;
***
Let d(a), d(b), d(c) denote the respective difference sequences. Conjectures:
12 occurs infinitely many times in d(a); 6 occurs infinitely many times in d(b);
2 occurs infinitely many times in d(c).

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4   10   12   14   17   23   26   30   37
b:   2    5    6    7    8   11   13   15   18   20
c:   3    9   16   19   22   28   36   41   48   57
		

Crossrefs

Programs

  • Mathematica
    z = 1000;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]];
    Do[{
      AppendTo[a, mex[Flatten[{a, b, c}], 2 Last[b]]],
      AppendTo[b, mex[Flatten[{a, b, c}], 1]],
      AppendTo[c, Last[a] + Last[b]]}, {z}];
    Take[a, 100] (* A299634 *)
    Take[b, 100] (* A299635 *)
    Take[c, 100] (* A299636 *)
    (* Peter J. C. Moses, Apr 08 2018 *)
Previous Showing 21-30 of 34 results. Next