cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 99 results. Next

A318950 Regular triangle where T(n,k) is the number of factorizations of n into factors > 1 with sum k.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Examples

			Triangle begins:
  0
  0 1
  0 0 1
  0 0 0 2
  0 0 0 0 1
  0 0 0 0 1 1
  0 0 0 0 0 0 1
  0 0 0 0 0 2 0 1
  0 0 0 0 0 1 0 0 1
  0 0 0 0 0 0 1 0 0 1
  0 0 0 0 0 0 0 0 0 0 1
  0 0 0 0 0 0 2 1 0 0 0 1
  0 0 0 0 0 0 0 0 0 0 0 0 1
  0 0 0 0 0 0 0 0 1 0 0 0 0 1
  0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
  0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 1
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
  0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
  0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 1
Row 12 {0,0,0,0,0,0,2,1,0,0,0,1} corresponds to the factorizations:
  . . . . . . (3*4)   (2*6) . . . (12)
              (2*2*3)
		

Crossrefs

Row sums are A001055. Column sums are A002865.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Total[#]==k&]],{n,20},{k,n}]

A379721 Numbers whose prime indices have sum <= product.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 100, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Jan 05 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Partitions of this type are counted by A319005.
The complement is A325038.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   17: {7}
   19: {8}
   21: {2,4}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   30: {1,2,3}
		

Crossrefs

The case of equality is A301987, inequality A325037.
Nonpositive positions in A325036.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A379681 gives sum plus product of prime indices, firsts A379682.
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A326156, A326172, A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721 (this)
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Total[prix[#]]<=Times@@prix[#]&]

Formula

Number k such that A056239(k) <= A003963(k).

A325036 Difference between product and sum of prime indices of n.

Original entry on oeis.org

1, 0, 0, -1, 0, -1, 0, -2, 0, -1, 0, -2, 0, -1, 1, -3, 0, -1, 0, -2, 2, -1, 0, -3, 3, -1, 2, -2, 0, 0, 0, -4, 3, -1, 5, -2, 0, -1, 4, -3, 0, 1, 0, -2, 5, -1, 0, -4, 8, 2, 5, -2, 0, 1, 7, -3, 6, -1, 0, -1, 0, -1, 8, -5, 9, 2, 0, -2, 7, 4, 0, -3, 0, -1, 10, -2, 11, 3, 0, -4, 8, -1, 0, 0, 11, -1, 8, -3, 0, 4, 14, -2, 9
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 45 are {2,2,3}, with product 12 and sum 7, so a(45) = 5.
		

Crossrefs

Positions of zeros are A301987. Positions of ones are A325041. Positions of negative ones are A325042.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@primeMS[n]-Total[primeMS[n]],{n,100}]
    dps[n_]:=Module[{pi=Flatten[Table[PrimePi[#[[1]]],#[[2]]]&/@FactorInteger[n]]},Times@@pi-Total[pi]]; Join[{1},Array[dps,100,2]] (* Harvey P. Dale, May 26 2023 *)
  • PARI
    A003963(n) = { n=factor(n); n[, 1]=apply(primepi, n[, 1]); factorback(n) }; \\ From A003963
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); };
    A325036(n) = (A003963(n) - A056239(n)); \\ Antti Karttunen, May 08 2022

Formula

a(n) = A003963(n) - A056239(n).
For all n >= 1, a(A325040(n)) = a(A122111(A325040(n))). - Antti Karttunen, May 08 2022

Extensions

Data section extended up to a(93) by Antti Karttunen, May 08 2022

A379722 Numbers whose prime indices do not have the same sum as product.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Partitions of this type are counted by A379736.
The complement is A301987, counted by A001055.

Examples

			The terms together with their prime indices begin:
    1: {}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   25: {3,3}
   26: {1,6}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
		

Crossrefs

Nonzeros of A325036.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A324851 finds numbers > 1 divisible by the sum of their prime indices.
A379666 counts partitions by sum and product, without 1's A379668.
A379681 gives sum plus product of prime indices, firsts A379682.
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721
- different: A379736, ranks A379722 (this)

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Times@@prix[#]!=Total[prix[#]]&]

A326152 Number of integer partitions of n whose product of parts is 2 * n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 0, 5, 0, 2, 3, 5, 0, 7, 0, 5, 3, 2, 0, 10, 2, 2, 5, 5, 0, 9, 0, 9, 3, 2, 3, 14, 0, 2, 3, 10, 0, 9, 0, 5, 9, 2, 0, 17, 2, 7, 3, 5, 0, 14, 3, 10, 3, 2, 0, 19, 0, 2, 9, 13, 3, 9, 0, 5, 3, 9, 0, 27, 0, 2, 9, 5, 3, 9, 0, 17, 10, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 09 2019

Keywords

Comments

Also the number of orderless factorizations of 2 * n into factors > 1 with sum at most n.
The Heinz numbers of these partitions are given by A326151.

Examples

			The a(8) = 3 through a(16) = 5 partitions (empty columns not shown) (A = 10):
  (44)    (63)    (541)   (831)      (74111)   (A311)      (841111)
  (422)   (3321)  (5221)  (6411)     (722111)  (651111)    (8221111)
  (2222)                  (62211)              (53211111)  (442111111)
                          (432111)                         (4222111111)
                          (3222111)                        (22222111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@#==2*n&]],{n,0,30}]

A326156 Number of nonempty subsets of {1..n} whose product is divisible by their sum.

Original entry on oeis.org

0, 1, 2, 4, 5, 10, 19, 34, 64, 129, 267, 541, 1104, 2253, 4694, 9804, 18894, 38539, 76063, 155241, 311938, 636120, 1299869, 2653853, 5183363, 10272289, 20958448, 40945577, 81745769, 167048919, 329598054, 671038751, 1301431524, 2618590422, 5305742557, 10582105199, 20660489585, 42075929255, 85443680451, 172057673225, 338513788818
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 19 subsets:
  {1}  {1}  {1}      {1}      {1}          {1}
       {2}  {2}      {2}      {2}          {2}
            {3}      {3}      {3}          {3}
            {1,2,3}  {4}      {4}          {4}
                     {1,2,3}  {5}          {5}
                              {1,2,3}      {6}
                              {1,4,5}      {3,6}
                              {2,3,5}      {1,2,3}
                              {3,4,5}      {1,4,5}
                              {1,2,3,4,5}  {2,3,5}
                                           {2,4,6}
                                           {3,4,5}
                                           {4,5,6}
                                           {1,2,3,6}
                                           {1,3,5,6}
                                           {3,4,5,6}
                                           {1,2,3,4,5}
                                           {1,2,3,4,6}
                                           {2,3,4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{1,n}],Divisible[Times@@#,Plus@@#]&]],{n,0,10}]

Extensions

a(21)-a(30) from Alois P. Heinz, Jun 13 2019
a(31)-a(40) from Bert Dobbelaere, Jun 22 2019

A340387 Numbers whose sum of prime indices is twice their number, counted with multiplicity in both cases.

Original entry on oeis.org

1, 3, 9, 10, 27, 28, 30, 81, 84, 88, 90, 100, 208, 243, 252, 264, 270, 280, 300, 544, 624, 729, 756, 784, 792, 810, 840, 880, 900, 1000, 1216, 1632, 1872, 2080, 2187, 2268, 2352, 2376, 2430, 2464, 2520, 2640, 2700, 2800, 2944, 3000, 3648, 4896, 5440, 5616
Offset: 1

Views

Author

Gus Wiseman, Jan 09 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions whose sum is twice their length, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Like partitions in general (A000041), these are also counted by A000041.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      3: {2}
      9: {2,2}
     10: {1,3}
     27: {2,2,2}
     28: {1,1,4}
     30: {1,2,3}
     81: {2,2,2,2}
     84: {1,1,2,4}
     88: {1,1,1,5}
     90: {1,2,2,3}
    100: {1,1,3,3}
    208: {1,1,1,1,6}
    243: {2,2,2,2,2}
    252: {1,1,2,2,4}
		

Crossrefs

Partitions of 2n into n parts are counted by A000041.
The number of prime indices alone is A001222.
The sum of prime indices alone is A056239.
Allowing sum to be any multiple of length gives A067538, ranked by A316413.
A000569 counts graphical partitions, ranked by A320922.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product, with nonprime case A301988.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Total[primeMS[#]]==2*PrimeOmega[#]&]

Formula

All terms satisfy A056239(a(n)) = 2*A001222(a(n)).

A379736 Number of integer partitions of n whose product of parts is not n.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 9, 14, 19, 28, 40, 55, 73, 100, 133, 174, 226, 296, 381, 489, 623, 790, 1000, 1254, 1568, 1956, 2434, 3007, 3714, 4564, 5599, 6841, 8342, 10141, 12308, 14881, 17968, 21636, 26013, 31183, 37331, 44582, 53169, 63260, 75171, 89130, 105556
Offset: 0

Views

Author

Gus Wiseman, Jan 07 2025

Keywords

Comments

These partitions are ranked by A379722, complement A301987.

Examples

			The a(2) = 1 through a(7) = 14 partitions:
  (11)  (21)   (31)    (32)     (33)      (43)
        (111)  (211)   (41)     (42)      (52)
               (1111)  (221)    (51)      (61)
                       (311)    (222)     (322)
                       (2111)   (411)     (331)
                       (11111)  (2211)    (421)
                                (3111)    (511)
                                (21111)   (2221)
                                (111111)  (3211)
                                          (4111)
                                          (22111)
                                          (31111)
                                          (211111)
                                          (1111111)
		

Crossrefs

The complement is counted by A001055.
The strict case is A111133 (except first term).
A000041 counts integer partitions, strict A000009.
A002865 counts partitions into parts > 1, see A379734, strict A379735.
A324851 finds numbers > 1 divisible by the sum of their prime indices.
A379666 counts partitions by sum and product, without 1's A379668.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736 (this), ranks A379722

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@#!=n&]],{n,0,30}]

Formula

a(n) = A000041(n) - A001055(n).

A319916 Number of integer partitions of any number from 1 to n whose product of parts is n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 7, 5, 5, 1, 18, 1, 7, 9, 35, 1, 30, 1, 34, 13, 11, 1, 88, 17, 13, 36, 50, 1, 74, 1, 127, 21, 17, 25, 193, 1, 19, 25, 162, 1, 108, 1, 82, 96, 23, 1, 379, 37, 100, 33, 98, 1, 229, 41, 236, 37, 29, 1, 433, 1, 31, 140, 485, 49
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Examples

			The sequence of integer partitions begins:
  (1)  (2)  (3)  (4)   (5)  (6)    (7)  (8)      (9)
                 (22)       (32)        (42)     (33)
                            (321)       (222)    (331)
                                        (421)    (3311)
                                        (2221)   (33111)
                                        (4211)
                                        (22211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Array[IntegerPartitions,n,1,Join],Times@@#==n&]],{n,30}]

A379666 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n with product k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 01 2025

Keywords

Comments

Counts finite multisets of positive integers by sum and product.

Examples

			Array begins:
        k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
        -----------------------------------------------
   n=0:  1   0   0   0   0   0   0   0   0   0   0   0
   n=1:  1   0   0   0   0   0   0   0   0   0   0   0
   n=2:  1   1   0   0   0   0   0   0   0   0   0   0
   n=3:  1   1   1   0   0   0   0   0   0   0   0   0
   n=4:  1   1   1   2   0   0   0   0   0   0   0   0
   n=5:  1   1   1   2   1   1   0   0   0   0   0   0
   n=6:  1   1   1   2   1   2   0   2   1   0   0   0
   n=7:  1   1   1   2   1   2   1   2   1   1   0   2
   n=8:  1   1   1   2   1   2   1   3   1   1   0   3
   n=9:  1   1   1   2   1   2   1   3   2   1   0   3
  n=10:  1   1   1   2   1   2   1   3   2   2   0   3
  n=11:  1   1   1   2   1   2   1   3   2   2   1   3
  n=12:  1   1   1   2   1   2   1   3   2   2   1   4
For example, the A(9,12) = 3 partitions are: (6,2,1), (4,3,1,1), (3,2,2,1,1).
Antidiagonals begin:
   n+k=1: 1
   n+k=2: 0 1
   n+k=3: 0 0 1
   n+k=4: 0 0 1 1
   n+k=5: 0 0 0 1 1
   n+k=6: 0 0 0 1 1 1
   n+k=7: 0 0 0 0 1 1 1
   n+k=8: 0 0 0 0 2 1 1 1
   n+k=9: 0 0 0 0 0 2 1 1 1
  n+k=10: 0 0 0 0 0 1 2 1 1 1
  n+k=11: 0 0 0 0 0 1 1 2 1 1 1
  n+k=12: 0 0 0 0 0 0 2 1 2 1 1 1
  n+k=13: 0 0 0 0 0 0 0 2 1 2 1 1 1
  n+k=14: 0 0 0 0 0 0 2 1 2 1 2 1 1 1
  n+k=15: 0 0 0 0 0 0 1 2 1 2 1 2 1 1 1
  n+k=16: 0 0 0 0 0 0 0 1 3 1 2 1 2 1 1 1
For example, antidiagonal n+k=10 counts the following partitions:
  n=5: (5)
  n=6: (411), (2211)
  n=7: (31111)
  n=8: (2111111)
  n=9: (111111111)
so the 10th antidiagonal is: (0,0,0,0,0,1,2,1,1,1).
		

Crossrefs

Row sums are A000041 = partitions of n, strict A000009, no ones A002865.
Diagonal A(n,n) is A001055(n) = factorizations of n, strict A045778.
Antidiagonal sums are A379667.
The case without ones is A379668, antidiagonal sums A379669 (zeros A379670).
The strict case is A379671, antidiagonal sums A379672.
The strict case without ones is A379678, antidiagonal sums A379679 (zeros A379680).
A316439 counts factorizations by length, partitions A008284.
A326622 counts factorizations with integer mean, strict A328966.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    nn=12;
    tt=Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *)
    tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *)
    Join@@tr (* sequence *)
Previous Showing 11-20 of 99 results. Next