cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A001055 The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 9, 1, 5, 1
Offset: 1

Views

Author

Keywords

Comments

From David W. Wilson, Feb 28 2009: (Start)
By a factorization of n we mean a multiset of integers > 1 whose product is n.
For example, 6 is the product of 2 such multisets, {2, 3} and {6}, so a(6) = 2.
Similarly 8 is the product of 3 such multisets, {2, 2, 2}, {2, 4} and {8}, so a(8) = 3.
1 is the product of 1 such multiset, namely the empty multiset {}, whose product is by definition the multiplicative identity 1. Hence a(1) = 1. (End)
a(n) = # { k | A064553(k) = n }. - Reinhard Zumkeller, Sep 21 2001; Benoit Cloitre and N. J. A. Sloane, May 15 2002
Number of members of A025487 with n divisors. - Matthew Vandermast, Jul 12 2004
See sequence A162247 for a list of the factorizations of n and a program for generating the factorizations for any n. - T. D. Noe, Jun 28 2009
So a(n) gives the number of different prime signatures that can be found among the integers that have n divisors. - Michel Marcus, Nov 11 2015
For n > 0, also the number of integer partitions of n with product n, ranked by A301987. For example, the a(12) = 4 partitions are: (12), (6,2,1,1,1,1), (4,3,1,1,1,1,1), (3,2,2,1,1,1,1,1). See also A380218. In general, A379666(m,n) = a(n) for any m >= n. - Gus Wiseman, Feb 07 2025

Examples

			1: 1, a(1) = 1
2: 2, a(2) = 1
3: 3, a(3) = 1
4: 4 = 2*2, a(4) = 2
6: 6 = 2*3, a(6) = 2
8: 8 = 2*4 = 2*2*2, a(8) = 3
etc.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211).

Crossrefs

A045782 gives the range of a(n).
For records see A033833, A033834.
Row sums of A316439 (for n>1).
Cf. A096276 (partial sums).
The additive version is A000041 (integer partitions), strict A000009.
Row sums of A318950.
A002865 counts partitions into parts > 1.
A069016 counts distinct sums of factorizations.
A319000 counts partitions by product and sum, row sums A319916.
A379666 (transpose A380959) counts partitions by sum and product, without 1's A379668, strict A379671.

Programs

  • Haskell
    a001055 = (map last a066032_tabl !!) . (subtract 1)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Java
    public class MultiPart {
        public static void main(String[] argV) {
            for (int i=1;i<=100;++i) System.out.println(1+getDivisors(2,i));
        }
        public static int getDivisors(int min,int n) {
            int total = 0;
            for (int i=min;i=i) { ++total; if (n/i>i) total+=getDivisors(i,n/i); }
            return total;
        }
    } \\ Scott R. Shannon, Aug 21 2019
  • Maple
    with(numtheory):
    T := proc(n::integer, m::integer)
            local A, summe, d:
            if isprime(n) then
                    if n <= m then
                            return 1;
                    end if:
                    return 0 ;
            end if:
            A := divisors(n) minus {n, 1}:
            for d in A do
                    if d > m then
                            A := A minus {d}:
                    end if:
            end do:
            summe := add(T(n/d,d),d=A) ;
            if n <=m then
                    summe := summe + 1:
            end if:
            summe ;
    end proc:
    A001055 := n -> T(n, n):
    [seq(A001055(n), n=1..100)]; # Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; a/@Range[100] (* c[n, r] is the number of factorizations of n with factors <= r. - Dean Hickerson, Oct 28 2002 *)
    T[, 1] = T[1, ] = 1;
    T[n_, m_] := T[n, m] = DivisorSum[n, Boole[1 < # <= m] * T[n/#, #]&];
    a[n_] := T[n, n];
    a /@ Range[100] (* Jean-François Alcover, Jan 03 2020 *)
  • PARI
    /* factorizations of n with factors <= m (n,m positive integers) */
    fcnt(n,m) = {local(s);s=0;if(n == 1,s=1,fordiv(n,d,if(d > 1 & d <= m,s=s+fcnt(n/d,d))));s}
    A001055(n) = fcnt(n,n) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    \\ code using Dirichlet g.f., based on Somos's code for A007896
    {a(n) = my(A, v, w, m);
    if(
    n<1, 0,
    \\ define unit vector v = [1, 0, 0, ...] of length n
    v = vector(n, k, k==1);
    for(k=2, n,
    m = #digits(n, k) - 1;
    \\ expand 1/(1-x)^k out far enough
    A = (1 - x)^ -1 + x * O(x^m);
    \\ w = zero vector of length n
    w = vector(n);
    \\ convert A to a vector
    for(i=0, m, w[k^i] = polcoeff(A, i));
    \\ build the answer
    v = dirmul(v, w)
    );
    v[n]
    )
    };
    \\ produce the sequence
    vector(100,n,a(n)) \\ N. J. A. Sloane, May 26 2014
    
  • PARI
    v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, (k>1) && n^valuation(k,n)==k)) ); v \\ Max Alekseyev, Jul 16 2014
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n<=m else 0
        A=filter(lambda d: d<=m, divisors(n)[1:-1])
        s=sum(T(n//d, d) for d in A)
        return s + 1 if n<=m else s
    def a(n): return T(n, n)
    print([a(n) for n in range(1, 106)]) # Indranil Ghosh, Aug 19 2017
    

Formula

The asymptotic behavior of this sequence was studied by Canfield, Erdős & Pomerance and Luca, Mukhopadhyay, & Srinivas. - Jonathan Vos Post, Jul 07 2008
Dirichlet g.f.: Product_{k>=2} 1/(1 - 1/k^s).
If n = p^k for a prime p, a(n) = partitions(k) = A000041(k).
Since the sequence a(n) is the right diagonal of A066032, the given recursive formula for A066032 applies (see Maple program). - Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
a(A002110(n)) = A000110(n).
a(p^k*q^k) = A002774(k) if p and q are distinct primes. - R. J. Mathar, Jun 06 2024
a(n) = A028422(n) + 1. - Gus Wiseman, Feb 07 2025

Extensions

Incorrect assertion about asymptotic behavior deleted by N. J. A. Sloane, Jun 08 2009

A057567 Number of partitions of n where the product of parts divides n.

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 2, 7, 4, 5, 2, 11, 2, 5, 5, 12, 2, 11, 2, 11, 5, 5, 2, 21, 4, 5, 7, 11, 2, 15, 2, 19, 5, 5, 5, 26, 2, 5, 5, 21, 2, 15, 2, 11, 11, 5, 2, 38, 4, 11, 5, 11, 2, 21, 5, 21, 5, 5, 2, 36, 2, 5, 11, 30, 5, 15, 2, 11, 5, 15, 2, 52, 2, 5, 11, 11, 5, 15, 2, 38, 12, 5, 2, 36, 5, 5, 5, 21
Offset: 1

Views

Author

Leroy Quet, Oct 04 2000

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1). - Christian G. Bower, Jun 03 2005

Examples

			From _Gus Wiseman_, Jul 04 2019: (Start)
The a(1) = 1 through a(9) = 5 partitions are the following. The Heinz numbers of these partitions are given by A326155.
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (321)     (1111111)  (4211)
                    (211)            (3111)               (22211)
                    (1111)           (21111)              (41111)
                                     (111111)             (221111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

Any prime numbered column of array A108461.

Programs

  • Mathematica
    Table[Function[m, Count[Map[Times @@ # &, IntegerPartitions[m]], P_ /; Divisible[m, P]] - Boole[n == 1]]@ Apply[Times, #] &@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, 88}] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    fcnt(n, m) = {local(s); s=0; if(n == 1, s=1, fordiv(n, d, if(d > 1 & d <= m, s=s+fcnt(n/d, d)))); s}
    A001055(n) = fcnt(n, n) \\ This function from Michael B. Porter, Oct 29 2009
    A057567(n) = sumdiv(n, d, A001055(d)); \\ After Jovovic's formula. Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n <= m else 0
        A = (d for d in divisors(n) if 1 < d < n and d <= m)
        s = sum(T(n // d, d) for d in A)
        return s + 1 if n <= m else s
    def a001055(n): return T(n, n)
    def a(n): return sum(a001055(d) for d in divisors(n))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 19 2017

Formula

a(n) = Sum_{d|n} A001055(d). - Vladeta Jovovic, Nov 19 2000
a(A025487(n)) = A108464(n).
a(p^k) = A000070(k).
a(A002110(n)) = A000110(n+1).
Dirichlet g.f.: zeta(s) * Product_{k>=2} 1/(1 - 1/k^s). - Ilya Gutkovskiy, Nov 03 2020

Extensions

More terms from James Sellers, Oct 09 2000
More terms from Vladeta Jovovic, Nov 19 2000

A057568 Number of partitions of n where n divides the product of the parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 6, 5, 5, 1, 22, 1, 11, 23, 80, 1, 113, 1, 150, 85, 45, 1, 737, 226, 84, 809, 726, 1, 1787, 1, 4261, 735, 260, 1925, 9567, 1, 437, 1877, 16402, 1, 14630, 1, 9861, 33057, 1152, 1, 102082, 19393, 57330, 10159, 30706, 1, 207706, 47927, 200652
Offset: 1

Views

Author

Leroy Quet, Oct 04 2000

Keywords

Examples

			From _Gus Wiseman_, Jul 04 2019: (Start)
The a(1) = 1 through a(9) = 5 partitions are the following. The Heinz numbers of these partitions are given by A326149.
  (1)  (2)  (3)  (4)   (5)  (6)    (7)  (8)      (9)
                 (22)       (321)       (44)     (63)
                                        (422)    (333)
                                        (2222)   (3321)
                                        (4211)   (33111)
                                        (22211)
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=1, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, min(i, n-i), t/igcd(i, t)))))
        end:
    a:= n-> `if`(isprime(n), 1, b(n$3)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Dec 20 2017
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n]&]],{n,20}] (* Gus Wiseman, Jul 04 2019 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 1, 1, 0], If[i < 1, 0, b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[i, n - i], t/GCD[i, t]]]]];
    a[n_] := If[PrimeQ[n], 1, b[n, n, n]];
    Array[a, 70] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • Scheme
    ;; This is a naive algorithm that scans over all partitions of each n. For fold_over_partitions_of see A000793.
    (define (A057568 n) (let ((z (list 0))) (fold_over_partitions_of n 1 * (lambda (partprod) (if (zero? (modulo partprod n)) (set-car! z (+ 1 (car z)))))) (car z)))
    ;; Antti Karttunen, Dec 20 2017

Extensions

More terms from James Sellers, Oct 09 2000

A319000 Regular triangle where T(n,k) is the number of finite multisets of positive integers with product n and sum k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 2, 3, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 3, 3, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 0 1
  0 0 0 2
  0 0 0 0 1
  0 0 0 0 1 2
  0 0 0 0 0 0 1
  0 0 0 0 0 2 2 3
  0 0 0 0 0 1 1 1 2
  0 0 0 0 0 0 1 1 1 2
  0 0 0 0 0 0 0 0 0 0 1
  0 0 0 0 0 0 2 3 3 3 3 4
  0 0 0 0 0 0 0 0 0 0 0 0 1
  0 0 0 0 0 0 0 0 1 1 1 1 1 2
  0 0 0 0 0 0 0 1 1 1 1 1 1 1 2
  0 0 0 0 0 0 0 3 3 4 4 4 4 4 4 5
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
  0 0 0 0 0 0 0 1 2 2 3 3 3 3 3 3 3 4
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
  0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 3 3 3 3 4
Row 12 {0,0,0,0,0,0,2,3,3,3,3,4} corresponds to the partitions (C = 12):
. . . . . . (43)  (62)   (621)   (6211)   (62111)    (C)
            (322) (431)  (4311)  (43111)  (431111)   (621111)
                  (3221) (32211) (322111) (3221111)  (4311111)
                                          (32211111)
		

Crossrefs

Row sums are A319916. Column sums are A319005. Last column is A001055.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[k],Times@@#==n&]],{n,20},{k,n}]

A319005 Number of integer partitions of n whose product of parts is >= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 7, 13, 18, 28, 40, 60, 80, 113, 152, 205, 266, 353, 454, 590, 751, 959, 1210, 1529, 1905, 2381, 2953, 3658, 4501, 5539, 6772, 8278, 10065, 12230, 14801, 17893, 21544, 25921, 31089, 37240, 44478, 53068, 63150, 75063, 89018, 105438, 124632
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Examples

			The a(1) = 1 through a(9) = 18 partitions:
  (1)  (2)  (3)  (4)   (5)   (6)    (7)     (8)      (9)
                 (22)  (32)  (33)   (43)    (44)     (54)
                             (42)   (52)    (53)     (63)
                             (222)  (322)   (62)     (72)
                             (321)  (331)   (332)    (333)
                                    (421)   (422)    (432)
                                    (2221)  (431)    (441)
                                            (521)    (522)
                                            (2222)   (531)
                                            (3221)   (621)
                                            (3311)   (3222)
                                            (4211)   (3321)
                                            (22211)  (4221)
                                                     (4311)
                                                     (5211)
                                                     (22221)
                                                     (32211)
                                                     (33111)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1, `if`(p>1,
          0, 1), b(n, i-1, p) +b(n-i, min(i, n-i), max(p/i, 1)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 22 2018
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@#>=n&]],{n,50}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[p > 1, 0, 1],
         b[n, i - 1, p] + b[n - i, Min[i, n - i], Max[p/i, 1]]];
    a[n_] := b[n, n, n];
    a /@ Range[0, 50] (* Jean-François Alcover, May 11 2021, after Alois P. Heinz *)

A379733 Number of strict integer partitions of n whose product of parts is a multiple of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 5, 1, 5, 7, 7, 1, 12, 1, 20, 15, 11, 1, 48, 12, 16, 33, 61, 1, 121, 1, 105, 67, 34, 126, 292, 1, 49, 128, 471, 1, 522, 1, 387, 751, 96, 1, 1556, 246, 792, 422, 869, 1, 2126, 1191, 2904, 726, 240, 1, 6393, 1, 321, 5460, 6711
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2025

Keywords

Comments

Partitions of this type are ranked by the squarefree terms of A326149.

Examples

			The a(n) partitions for n = 1, 6, 10, 12, 15, 18:
  (1)  (6)      (10)     (12)       (15)         (18)
       (3,2,1)  (5,3,2)  (5,4,3)    (6,5,4)      (12,6)
                (5,4,1)  (6,4,2)    (7,5,3)      (9,5,4)
                         (8,3,1)    (9,5,1)      (9,6,3)
                         (6,3,2,1)  (10,3,2)     (9,7,2)
                                    (6,5,3,1)    (9,8,1)
                                    (5,4,3,2,1)  (6,5,4,3)
                                                 (7,6,3,2)
                                                 (8,6,3,1)
                                                 (9,4,3,2)
                                                 (9,6,2,1)
                                                 (12,3,2,1)
		

Crossrefs

The non-strict opposite version is A057567, ranks A326155.
The non-strict version is A057568, ranks A326149.
The case of partitions without 1's is A379735, non-strict A379734.
A319005 counts partitions with product >= sum, ranks A379721.
A114324 counts partitions with product greater than sum, ranks A325037.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 `if`(isprime(n), 1, b(n$3)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Jan 07 2025
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Times@@#,n]&]],{n,30}]

A319916 Number of integer partitions of any number from 1 to n whose product of parts is n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 7, 5, 5, 1, 18, 1, 7, 9, 35, 1, 30, 1, 34, 13, 11, 1, 88, 17, 13, 36, 50, 1, 74, 1, 127, 21, 17, 25, 193, 1, 19, 25, 162, 1, 108, 1, 82, 96, 23, 1, 379, 37, 100, 33, 98, 1, 229, 41, 236, 37, 29, 1, 433, 1, 31, 140, 485, 49
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Examples

			The sequence of integer partitions begins:
  (1)  (2)  (3)  (4)   (5)  (6)    (7)  (8)      (9)
                 (22)       (32)        (42)     (33)
                            (321)       (222)    (331)
                                        (421)    (3311)
                                        (2221)   (33111)
                                        (4211)
                                        (22211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Array[IntegerPartitions,n,1,Join],Times@@#==n&]],{n,30}]

A379666 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n with product k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 01 2025

Keywords

Comments

Counts finite multisets of positive integers by sum and product.

Examples

			Array begins:
        k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
        -----------------------------------------------
   n=0:  1   0   0   0   0   0   0   0   0   0   0   0
   n=1:  1   0   0   0   0   0   0   0   0   0   0   0
   n=2:  1   1   0   0   0   0   0   0   0   0   0   0
   n=3:  1   1   1   0   0   0   0   0   0   0   0   0
   n=4:  1   1   1   2   0   0   0   0   0   0   0   0
   n=5:  1   1   1   2   1   1   0   0   0   0   0   0
   n=6:  1   1   1   2   1   2   0   2   1   0   0   0
   n=7:  1   1   1   2   1   2   1   2   1   1   0   2
   n=8:  1   1   1   2   1   2   1   3   1   1   0   3
   n=9:  1   1   1   2   1   2   1   3   2   1   0   3
  n=10:  1   1   1   2   1   2   1   3   2   2   0   3
  n=11:  1   1   1   2   1   2   1   3   2   2   1   3
  n=12:  1   1   1   2   1   2   1   3   2   2   1   4
For example, the A(9,12) = 3 partitions are: (6,2,1), (4,3,1,1), (3,2,2,1,1).
Antidiagonals begin:
   n+k=1: 1
   n+k=2: 0 1
   n+k=3: 0 0 1
   n+k=4: 0 0 1 1
   n+k=5: 0 0 0 1 1
   n+k=6: 0 0 0 1 1 1
   n+k=7: 0 0 0 0 1 1 1
   n+k=8: 0 0 0 0 2 1 1 1
   n+k=9: 0 0 0 0 0 2 1 1 1
  n+k=10: 0 0 0 0 0 1 2 1 1 1
  n+k=11: 0 0 0 0 0 1 1 2 1 1 1
  n+k=12: 0 0 0 0 0 0 2 1 2 1 1 1
  n+k=13: 0 0 0 0 0 0 0 2 1 2 1 1 1
  n+k=14: 0 0 0 0 0 0 2 1 2 1 2 1 1 1
  n+k=15: 0 0 0 0 0 0 1 2 1 2 1 2 1 1 1
  n+k=16: 0 0 0 0 0 0 0 1 3 1 2 1 2 1 1 1
For example, antidiagonal n+k=10 counts the following partitions:
  n=5: (5)
  n=6: (411), (2211)
  n=7: (31111)
  n=8: (2111111)
  n=9: (111111111)
so the 10th antidiagonal is: (0,0,0,0,0,1,2,1,1,1).
		

Crossrefs

Row sums are A000041 = partitions of n, strict A000009, no ones A002865.
Diagonal A(n,n) is A001055(n) = factorizations of n, strict A045778.
Antidiagonal sums are A379667.
The case without ones is A379668, antidiagonal sums A379669 (zeros A379670).
The strict case is A379671, antidiagonal sums A379672.
The strict case without ones is A379678, antidiagonal sums A379679 (zeros A379680).
A316439 counts factorizations by length, partitions A008284.
A326622 counts factorizations with integer mean, strict A328966.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    nn=12;
    tt=Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *)
    tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *)
    Join@@tr (* sequence *)

A379720 Except a(0)=1 and a(4)=0, number of integer partitions of n with no 1's and at least two parts.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 3, 3, 6, 7, 11, 13, 20, 23, 33, 40, 54, 65, 87, 104, 136, 164, 209, 252, 319, 382, 477, 573, 707, 846, 1038, 1237, 1506, 1793, 2166, 2572, 3093, 3659, 4377, 5169, 6152, 7244, 8590, 10086, 11913, 13958, 16423, 19195, 22518, 26251, 30700, 35716
Offset: 0

Views

Author

Gus Wiseman, Jan 06 2025

Keywords

Comments

Also partitions of n such that all parts are > 1 and have product > n.
Allowing 1's gives A114324, ranks A325037. The strict case is A318029 (except first term).

Examples

			The a(5) = 1 through a(11) = 13 partitions:
  (3,2)  (3,3)    (4,3)    (4,4)      (5,4)      (5,5)        (6,5)
         (4,2)    (5,2)    (5,3)      (6,3)      (6,4)        (7,4)
         (2,2,2)  (3,2,2)  (6,2)      (7,2)      (7,3)        (8,3)
                           (3,3,2)    (3,3,3)    (8,2)        (9,2)
                           (4,2,2)    (4,3,2)    (4,3,3)      (4,4,3)
                           (2,2,2,2)  (5,2,2)    (4,4,2)      (5,3,3)
                                      (3,2,2,2)  (5,3,2)      (5,4,2)
                                                 (6,2,2)      (6,3,2)
                                                 (3,3,2,2)    (7,2,2)
                                                 (4,2,2,2)    (3,3,3,2)
                                                 (2,2,2,2,2)  (4,3,2,2)
                                                              (5,2,2,2)
                                                              (3,2,2,2,2)
		

Crossrefs

For <= instead of < we have A002865 = partitions into parts > 1.
These partitions have ranks A071904 (except initial terms).
Set a(4) = 1 to get A083751.
A000041 counts integer partitions, strict A000009.
A379668 counts partitions without 1's by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Plus@@#
    				

Formula

Except for n = 0 and n = 4, we have a(n) = A002865(n) - 1.

A379671 Array read by antidiagonals downward where A(n,k) is the number of finite sets of positive integers with sum n and product k.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 01 2025

Keywords

Comments

Counts finite sets of positive integers by sum and product.

Examples

			Array begins:
        k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
        -----------------------------------------------
   n=0:  1   0   0   0   0   0   0   0   0   0   0   0
   n=1:  1   0   0   0   0   0   0   0   0   0   0   0
   n=2:  0   1   0   0   0   0   0   0   0   0   0   0
   n=3:  0   1   1   0   0   0   0   0   0   0   0   0
   n=4:  0   0   1   1   0   0   0   0   0   0   0   0
   n=5:  0   0   0   1   1   1   0   0   0   0   0   0
   n=6:  0   0   0   0   1   2   0   1   0   0   0   0
   n=7:  0   0   0   0   0   1   1   1   0   1   0   1
   n=8:  0   0   0   0   0   0   1   1   0   1   0   2
   n=9:  0   0   0   0   0   0   0   1   1   0   0   1
  n=10:  0   0   0   0   0   0   0   0   1   1   0   0
  n=11:  0   0   0   0   0   0   0   0   0   1   1   0
  n=12:  0   0   0   0   0   0   0   0   0   0   1   1
The A(8,12) = 2 sets are: {2,6}, {1,3,4}.
The A(14,40) = 2 sets are: {4,10}, {1,5,8}.
Antidiagonals begin:
   n+k=1: 1
   n+k=2: 0 1
   n+k=3: 0 0 0
   n+k=4: 0 0 1 0
   n+k=5: 0 0 0 1 0
   n+k=6: 0 0 0 1 0 0
   n+k=7: 0 0 0 0 1 0 0
   n+k=8: 0 0 0 0 1 0 0 0
   n+k=9: 0 0 0 0 0 1 0 0 0
  n+k=10: 0 0 0 0 0 1 0 0 0 0
  n+k=11: 0 0 0 0 0 1 1 0 0 0 0
  n+k=12: 0 0 0 0 0 0 2 0 0 0 0 0
  n+k=13: 0 0 0 0 0 0 0 1 0 0 0 0 0
  n+k=14: 0 0 0 0 0 0 1 1 0 0 0 0 0 0
  n+k=15: 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
  n+k=16: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
For example, antidiagonal n+k=11 counts the following sets:
  n=5: {2,3}
  n=6: {1,5}
so the 11th antidiagonal is: (0,0,0,0,0,1,1,0,0,0,0).
		

Crossrefs

Row sums are A000009 = strict partitions, non-strict A000041.
Column sums are 2*A045778 where A045778 = strict factorizations, non-strict A001055.
Antidiagonal sums are A379672, non-strict A379667 (zeros A379670).
Without ones we have A379678, antidiagonal sums A379679 (zeros A379680).
The non-strict version is A379666, without ones A379668.
A316439 counts factorizations by length, partitions A008284.
A326622 counts factorizations with integer mean, strict A328966.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    nn=12;
    tt=Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *)
    tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *)
    Join@@tr (* sequence *)
Showing 1-10 of 37 results. Next