cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A303280 Number of strict integer partitions of n whose parts have a common divisor other than 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 1, 10, 1, 11, 6, 12, 1, 19, 3, 18, 8, 23, 1, 36, 1, 32, 13, 38, 7, 57, 1, 54, 19, 68, 1, 95, 1, 90, 33, 104, 1, 148, 5, 149, 39, 166, 1, 230, 14, 226, 55, 256, 1, 360, 1, 340, 82, 390, 20, 527, 1, 513, 105, 609, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2018

Keywords

Examples

			The a(18) = 10 strict partitions are (18), (10,8), (12,6), (14,4), (15,3), (16,2), (8,6,4), (9,6,3), (10,6,2), (12,4,2).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> -add(mobius(d)*b(n/d), d=divisors(n) minus {1}):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 23 2018
  • Mathematica
    Table[-Sum[MoebiusMu[d]*PartitionsQ[n/d],{d,Rest[Divisors[n]]}],{n,100}]

Formula

a(n) = -Sum_{d|n, d > 1} mu(d) * A000009(n/d).

A337697 Number of pairwise coprime compositions of n with no 1's, where a singleton is not considered coprime.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 4, 2, 4, 8, 8, 14, 10, 16, 12, 30, 38, 46, 46, 48, 52, 62, 152, 96, 156, 112, 190, 256, 338, 420, 394, 326, 402, 734, 622, 1150, 802, 946, 898, 1730, 1946, 2524, 2200, 2328, 2308, 3356, 5816, 4772, 5350, 4890, 6282, 6316, 12092, 8902
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. These compositions must be strict.

Examples

			The a(5) = 2 through a(12) = 14 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)  (3,5)  (2,7)  (3,7)    (2,9)  (5,7)
  (3,2)     (3,4)  (5,3)  (4,5)  (7,3)    (3,8)  (7,5)
            (4,3)         (5,4)  (2,3,5)  (4,7)  (2,3,7)
            (5,2)         (7,2)  (2,5,3)  (5,6)  (2,7,3)
                                 (3,2,5)  (6,5)  (3,2,7)
                                 (3,5,2)  (7,4)  (3,4,5)
                                 (5,2,3)  (8,3)  (3,5,4)
                                 (5,3,2)  (9,2)  (3,7,2)
                                                 (4,3,5)
                                                 (4,5,3)
                                                 (5,3,4)
                                                 (5,4,3)
                                                 (7,2,3)
                                                 (7,3,2)
		

Crossrefs

A022340 intersected with A333227 is a ranking sequence (using standard compositions A066099) for these compositions.
A212804 does not require coprimality, with unordered version A002865.
A337450 is the relatively prime instead of pairwise coprime version, with strict case A337451 and unordered version A302698.
A337462 allows 1's, with strict case A337561 (or A101268 with singletons), unordered version A327516 with Heinz numbers A302696, and 3-part case A337461.
A337485 is the unordered version (or A007359 with singletons considered coprime), with Heinz numbers A337984.
A337563 is the case of unordered triples.

Programs

  • Mathematica
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]

Formula

For n > 1, the version where singletons are considered coprime is a(n) + 1.

A366848 Odd numbers whose odd prime indices are relatively prime.

Original entry on oeis.org

55, 85, 155, 165, 187, 205, 253, 255, 275, 295, 335, 341, 385, 391, 415, 425, 451, 465, 485, 495, 527, 545, 561, 595, 605, 615, 635, 649, 697, 713, 715, 737, 745, 759, 765, 775, 785, 799, 803, 825, 885, 895, 913, 935, 943, 955, 1003, 1005, 1023, 1025, 1045
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The odd prime indices of 345 are {3,9}, which are not relatively prime, so 345 is not in the sequence.
The odd prime indices of 825 are {3,3,5}, which are relatively prime, so 825 is in the sequence
The terms together with their prime indices begin:
    55: {3,5}
    85: {3,7}
   155: {3,11}
   165: {2,3,5}
   187: {5,7}
   205: {3,13}
   253: {5,9}
   255: {2,3,7}
   275: {3,3,5}
   295: {3,17}
   335: {3,19}
   341: {5,11}
   385: {3,4,5}
   391: {7,9}
   415: {3,23}
   425: {3,3,7}
   451: {5,13}
   465: {2,3,11}
   485: {3,25}
   495: {2,2,3,5}
		

Crossrefs

Including even terms and prime indices gives A289509, ones of A289508, counted by A000837.
Including even prime indices gives A302697, counted by A302698.
Including even terms gives A366846, counted by A366850.
For halved even instead of odd prime indices we have A366849.
A000041 counts integer partitions, strict A000009 (also into odds).
A066208 lists numbers with all odd prime indices, even A066207.
A112798 lists prime indices, length A001222, sum A056239.
A257991 counts odd prime indices, even A257992.
A366528 adds up odd prime indices, partition triangle A113685.
A366531 = 2*A366533 adds up even prime indices, triangle A113686/A174713.

Programs

  • Mathematica
    Select[Range[1000], OddQ[#]&&GCD@@Select[PrimePi/@First/@FactorInteger[#], OddQ]==1&]

A302798 Squarefree numbers that are prime or whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions that either consist of a single part or have pairwise coprime parts.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 66, 67, 69, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110, 113, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
03 : {2}
05 : {3}
06 : {1,2}
07 : {4}
10 : {1,3}
11 : {5}
13 : {6}
14 : {1,4}
15 : {2,3}
17 : {7}
19 : {8}
22 : {1,5}
23 : {9}
26 : {1,6}
29 : {10}
30 : {1,2,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&(PrimeQ[#]||CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]])]&]

A303138 Regular triangle where T(n,k) is the number of strict integer partitions of n with greatest common divisor k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 1, 6, 0, 1, 0, 0, 0, 0, 0, 1, 7, 2, 0, 0, 0, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 17, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 0, 2, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2018

Keywords

Examples

			Triangle begins:
01:   1
02:   0  1
03:   1  0  1
04:   1  0  0  1
05:   2  0  0  0  1
06:   2  1  0  0  0  1
07:   4  0  0  0  0  0  1
08:   4  1  0  0  0  0  0  1
09:   6  0  1  0  0  0  0  0  1
10:   7  2  0  0  0  0  0  0  0  1
11:  11  0  0  0  0  0  0  0  0  0  1
12:  10  2  1  1  0  0  0  0  0  0  0  1
13:  17  0  0  0  0  0  0  0  0  0  0  0  1
14:  17  4  0  0  0  0  0  0  0  0  0  0  0  1
15:  23  0  2  0  1  0  0  0  0  0  0  0  0  0  1
The strict partitions counted in row 12 are the following.
T(12,1) = 10: (11,1) (9,2,1) (8,3,1) (7,5) (7,4,1) (7,3,2) (6,5,1) (6,3,2,1) (5,4,3) (5,4,2,1)
T(12,2) = 2:  (10,2) (6,4,2)
T(12,3) = 1:  (9,3)
T(12,4) = 1:  (8,4)
T(12,12) = 1: (12)
		

Crossrefs

First column is A078374. Second column at even indices is same as first column. Row sums are A000009. Row sums with first column removed are A303280.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#===k&]],{n,15},{k,n}]

Formula

If k divides n, T(n,k) = A078374(n/k); otherwise T(n,k) = 0.

A366852 Number of integer partitions of n into odd parts with a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 4, 0, 1, 4, 1, 2, 6, 1, 1, 6, 3, 1, 8, 2, 1, 13, 1, 0, 13, 1, 7, 15, 1, 1, 19, 6, 1, 25, 1, 2, 33, 1, 1, 32, 5, 10, 39, 2, 1, 46, 14, 6, 55, 1, 1, 77, 1, 1, 82, 0, 20, 92, 1, 2, 105, 31, 1, 122, 1, 1, 166, 2, 16, 168
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Examples

			The a(n) partitions for n = 3, 9, 15, 21, 25, 27:
(3)  (9)      (15)         (21)             (25)         (27)
     (3,3,3)  (5,5,5)      (7,7,7)          (15,5,5)     (9,9,9)
              (9,3,3)      (9,9,3)          (5,5,5,5,5)  (15,9,3)
              (3,3,3,3,3)  (15,3,3)                      (21,3,3)
                           (9,3,3,3,3)                   (9,9,3,3,3)
                           (3,3,3,3,3,3,3)               (15,3,3,3,3)
                                                         (9,3,3,3,3,3,3)
                                                         (3,3,3,3,3,3,3,3,3)
		

Crossrefs

Allowing even parts gives A018783, complement A000837.
For parts > 1 instead of gcd > 1 we have A087897.
For gcd = 1 instead of gcd > 1 we have A366843.
The strict case is A366750, with evens A303280.
The strict complement is A366844, with evens A078374.
A000041 counts integer partitions, strict A000009 (also into odd parts).
A000700 counts strict partitions into odd parts.
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A168532 counts partitions by gcd.
A366842 counts partitions whose odd parts have a common divisor > 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@OddQ/@#&&GCD@@#>1&]],{n,15}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366852(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)>1) # Chai Wah Wu, Nov 02 2023

Extensions

More terms from Chai Wah Wu, Nov 02 2023
a(0)=0 prepended by Alois P. Heinz, Jan 11 2024

A338333 Number of relatively prime 3-part strict integer partitions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 8, 14, 12, 18, 16, 24, 18, 30, 25, 34, 30, 44, 31, 52, 42, 56, 49, 69, 50, 80, 64, 83, 70, 102, 71, 114, 90, 112, 100, 140, 98, 153, 117, 153, 132, 184, 128, 195, 154, 196, 169, 234, 156, 252, 196, 241
Offset: 0

Views

Author

Gus Wiseman, Oct 30 2020

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A005117 (strict), A005408 (no 1's), A014612 (length 3), and A289509 (relatively prime).

Examples

			The a(9) = 1 through a(19) = 14 triples (A = 10, B = 11, C = 12, D = 13, E = 14):
  432   532   542   543   643   653   654   754   764   765   865
              632   732   652   743   753   763   854   873   874
                          742   752   762   853   863   954   964
                          832   932   843   943   872   972   973
                                      852   952   953   A53   982
                                      942   B32   962   B43   A54
                                      A32         A43   B52   A63
                                                  A52   D32   A72
                                                  B42         B53
                                                  C32         B62
                                                              C43
                                                              C52
                                                              D42
                                                              E32
		

Crossrefs

A001399(n-9) does not require relative primality.
A005117 /\ A005408 /\ A014612 /\ A289509 gives the Heinz numbers.
A055684 is the 2-part version.
A284825 counts the case that is also pairwise non-coprime.
A337452 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A337605 is the pairwise non-coprime instead of relative prime version.
A338332 is the not necessarily strict version.
A338333*6 is the ordered version.
A000837 counts relatively prime partitions.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A101271 counts 3-part relatively prime strict partitions.
A220377 counts 3-part pairwise coprime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]

A355738 Least k such that there are exactly n ways to choose a sequence of divisors, one of each prime index of k (with multiplicity), such that the result has no common divisor > 1.

Original entry on oeis.org

1, 2, 6, 9, 15, 49, 35, 27, 45, 98, 63, 105, 171, 117, 81, 135, 245, 343, 273, 549, 189, 1083, 315, 5618, 741, 686, 507, 513, 351, 243, 405, 7467, 6419, 5575, 735, 6859, 1813, 3231, 1183, 1197, 3537, 819, 1647, 567, 945, 2197, 8397, 3211, 1715, 3249, 3367
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355737.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
     6: {1,2}
     9: {2,2}
    15: {2,3}
    49: {4,4}
    35: {3,4}
    27: {2,2,2}
    45: {2,2,3}
    98: {1,4,4}
    63: {2,2,4}
   105: {2,3,4}
   171: {2,2,8}
   117: {2,2,6}
    81: {2,2,2,2}
   135: {2,2,2,3}
For example, the choices for a(12) = 105 are:
  (1,1,1)  (1,3,2)  (2,1,4)
  (1,1,2)  (1,3,4)  (2,3,1)
  (1,1,4)  (2,1,1)  (2,3,2)
  (1,3,1)  (2,1,2)  (2,3,4)
		

Crossrefs

Not requiring coprimality gives A355732, firsts of A355731.
Positions of first appearances in A355737.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices.
A289509 ranks relatively prime partitions, odd A302697, squarefree A302796.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Length[Select[Tuples[Divisors/@primeMS[n]],GCD@@#==1&]],{n,100}];
    Table[Position[az+1,k][[1,1]],{k,mnrm[az+1]}]

A305735 Number of integer partitions of n whose greatest common divisor is a prime number.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 3, 2, 7, 1, 10, 1, 15, 8, 17, 1, 34, 1, 37, 16, 56, 1, 80, 6, 101, 27, 122, 1, 208, 1, 209, 57, 297, 20, 410, 1, 490, 102, 599, 1, 901, 1, 948, 194, 1255, 1, 1690, 14, 1985, 298, 2337, 1, 3327, 61, 3597, 491, 4565, 1, 6031, 1, 6842, 802
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2018

Keywords

Examples

			The a(10) = 7 integer partitions are (82), (64), (622), (55), (442), (4222), (22222).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],PrimeQ[GCD@@#]&]],{n,20}]
  • PARI
    seq(n)={dirmul(vector(n, n, numbpart(n)), dirmul(vector(n, n, moebius(n)), vector(n, n, isprime(n))))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) = Sum_{d|n} A143519(d) * A000041(n/d). - Andrew Howroyd, Jun 22 2018

A338332 Number of relatively prime 3-part integer partitions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 3, 8, 6, 9, 9, 16, 10, 21, 15, 22, 20, 33, 21, 38, 30, 41, 35, 56, 34, 65, 49, 64, 56, 79, 55, 96, 72, 93, 77, 120, 76, 133, 99, 122, 110, 161, 105, 172, 126, 167, 143, 208, 136, 213, 165, 212, 182, 261, 163, 280, 210, 257
Offset: 0

Views

Author

Gus Wiseman, Oct 30 2020

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A014612 (length 3), and A289509 (relatively prime).

Examples

			The a(7) = 1 through a(17) = 16 triples (A = 10, B = 11, C = 12, D = 13):
  322   332   432   433   443   543   544   554   654   655   665
              522   532   533   552   553   653   744   754   755
                          542   732   643   743   753   763   764
                          632         652   752   762   772   773
                          722         733   833   843   853   854
                                      742   932   852   943   863
                                      832         942   952   872
                                      922         A32   A33   944
                                                  B22   B32   953
                                                              962
                                                              A43
                                                              A52
                                                              B33
                                                              B42
                                                              C32
                                                              D22
		

Crossrefs

A001399(n-6) does not require relative primality.
A005408 /\ A014612 /\ A289509 gives the Heinz numbers of these partitions.
A055684 is the 2-part version.
A284825 counts the case that is also pairwise non-coprime.
A302698 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A338333 is the strict version.
A000837 counts relatively prime partitions, with strict case A078374.
A008284 counts partitions by sum and length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]
Previous Showing 21-30 of 34 results. Next