cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 55 results. Next

A318746 Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and successive parts (including the last with the first part) being indivisible.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 4, 5, 6, 8, 11, 17, 20, 29, 41, 56, 79, 107, 155, 214, 305, 422, 604, 850, 1207, 1709, 2424, 3439, 4905, 6972, 9949, 14171, 20268, 28915, 41392, 59176, 84790, 121428, 174163, 249760, 358578, 514873, 739910, 1063523, 1529767, 2200926
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(14) = 17 Lyndon compositions with successive parts indivisible:
  (14)
  (3,11) (4,10) (5,9) (6,8)
  (2,3,9) (2,5,7) (2,7,5) (3,4,7) (3,6,5) (3,7,4)
  (2,3,2,7) (2,3,4,5) (2,4,3,5) (2,4,5,3) (2,5,4,3)
  (2,3,2,4,3)
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,LyndonQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]]&]],{n,20}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->i%j<>0))); vector(n, n, 1 + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018

A318747 Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and adjacent parts (including the last with the first part) being indivisible (either way).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 5, 5, 8, 7, 12, 14, 20, 31, 37, 51, 64, 96, 129, 177, 246, 328, 465, 630, 889, 1230, 1692, 2370, 3250, 4587, 6354, 8895, 12384, 17252, 24180, 33777, 47336, 66254, 92752, 130142, 182337, 256246, 359500, 505231, 709787, 997951, 1403883
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(14) = 12 Lyndon compositions with adjacent parts indivisible either way:
  (14)
  (3,11) (4,10) (5,9) (6,8)
  (2,5,7) (2,7,5) (3,4,7) (3,7,4)
  (2,3,2,7) (2,3,4,5) (2,5,4,3)
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,And[LyndonQ[#],And@@Not/@Divisible@@@Partition[#,2,1,1],And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]]]&]],{n,20}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->i%j<>0 && j%i<>0))); vector(n, n, 1 + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018

A327394 Number of stable divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 4, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 5, 2, 6, 4, 3, 4, 5, 2, 3, 3, 5, 2, 4, 2, 4, 6, 3, 2, 6, 3, 4, 4, 4, 2, 5, 4, 5, 3, 3, 2, 6, 2, 3, 4, 7, 3, 5, 2, 4, 4, 5, 2, 6, 2, 3, 6, 4, 4, 4, 2, 6, 5, 3, 2, 5, 4, 3, 3, 5, 2, 7, 4, 4, 4, 3, 4, 7, 2, 4, 6, 5, 2, 5, 2, 5, 6, 3, 2, 6, 2, 5, 3, 6, 2, 4, 3, 4, 4, 3, 4, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number is stable if its distinct prime indices are pairwise indivisible. Stable numbers are listed in A316476. Maximum stable divisor is A327393.

Examples

			The stable divisors of 60 are {1, 2, 3, 4, 5, 15}, so a(60) = 6.
		

Crossrefs

See link for additional cross-references.
Inverse Möbius transform of A378442.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Divisors[n],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]],{n,100}]
  • PARI
    A378442(n)={my(v=apply(primepi, factor(n)[, 1])); for(j=2, #v, for(i=1, j-1, if(v[j]%v[i]==0, return(0)))); 1}; \\ From the function "ok" in A316476 by Andrew Howroyd, Aug 26 2018
    A327394(n) = sumdiv(n,d,A378442(d)); \\ Antti Karttunen, Nov 27 2024

Formula

a(n) = Sum_{d|n} A378442(d). - Antti Karttunen, Nov 27 2024

Extensions

More terms from Antti Karttunen, Nov 27 2024

A305194 Number of z-forests summing to n. Number of strict integer partitions of n with pairwise indivisible parts and all connected components having clutter density -1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 4, 6, 7, 7, 9, 11, 12, 13, 15, 17, 20, 23, 25, 27, 32, 35, 40, 45, 49, 54, 58, 67, 78, 82, 95, 99, 111, 123, 135, 150, 164, 177, 194, 214, 236, 260, 282, 309, 330
Offset: 1

Views

Author

Gus Wiseman, May 27 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(lcm(S)), where omega = A001221 and lcm is least common multiple. Then a z-forest is a strict integer partition with pairwise indivisible parts greater than 1 such that all connected components have clutter density -1.

Examples

			The a(17) = 11 z-forests together with the corresponding multiset systems:
       (17): {{7}}
     (15,2): {{2,3},{1}}
     (14,3): {{1,4},{2}}
     (13,4): {{6},{1,1}}
     (12,5): {{1,1,2},{3}}
     (11,6): {{5},{1,2}}
     (10,7): {{1,3},{4}}
      (9,8): {{2,2},{1,1,1}}
   (10,4,3): {{1,3},{1,1},{2}}
    (7,6,4): {{4},{1,2},{1,1}}
  (7,5,3,2): {{4},{3},{2},{1}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    Table[Length[Select[IntegerPartitions[n],Function[s,UnsameQ@@s&&And@@(Length[#]==1||zreeQ[#]&)/@Table[Select[s,Divisible[m,#]&],{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,50}]

A305195 Number of z-blobs summing to n. Number of connected strict integer partitions of n, with pairwise indivisible parts, that cannot be capped by a z-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 3, 3, 3, 1, 1, 1, 4, 5, 6, 2, 1, 1, 4, 6, 7, 2, 2, 6
Offset: 1

Views

Author

Gus Wiseman, May 27 2018

Keywords

Comments

Caps of a clutter are defined in the link, and the generalization to "multiclutters," where edges can be multisets, is straightforward.

Examples

			The a(30) = 2 z-blobs together with the corresponding multiset systems:
     (30): {{1,2,3}}
  (18,12): {{1,2,2},{1,1,2}}
The a(47) = 3 z-blobs together with the corresponding multiset systems:
        (47): {{15}}
  (21,14,12): {{2,4},{1,4},{1,1,2}}
  (20,15,12): {{1,1,3},{2,3},{1,1,2}}
The a(60) = 5 z-blobs together with the corresponding multiset systems:
           (60): {{1,1,2,3}}
        (42,18): {{1,2,4},{1,2,2}}
        (36,24): {{1,1,2,2},{1,1,1,2}}
     (30,18,12): {{1,2,3},{1,2,2},{1,1,2}}
  (21,15,14,10): {{2,4},{2,3},{1,4},{1,3}}
The a(67) = 7 z-blobs together with the corresponding multiset systems:
           (67): {{19}}
     (45,12,10): {{2,2,3},{1,1,2},{1,3}}
     (42,15,10): {{1,2,4},{2,3},{1,3}}
     (40,15,12): {{1,1,1,3},{2,3},{1,1,2}}
     (33,22,12): {{2,5},{1,5},{1,1,2}}
     (28,21,18): {{1,1,4},{2,4},{1,2,2}}
  (24,18,15,10): {{1,1,1,2},{1,2,2},{2,3},{1,3}}
		

Crossrefs

A317101 Numbers whose prime multiplicities are pairwise indivisible.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Examples

			72 = 2^3 * 3^2 is in the sequence because 3 and 2 are pairwise indivisible.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Select[Tuples[Last/@FactorInteger[#],2],And[UnsameQ@@#,Divisible@@#]&]=={}&]

A326082 Number of maximal sets of pairwise indivisible divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 8, 3, 3, 4, 5, 2, 7, 2, 6, 3, 3, 3, 9, 2, 3, 3, 8, 2, 7, 2, 5, 5, 3, 2, 12, 3, 5, 3, 5, 2, 8, 3, 8, 3, 3, 2, 15, 2, 3, 5, 7, 3, 7, 2, 5, 3, 7, 2, 15, 2, 3, 5, 5, 3, 7, 2, 12, 5, 3, 2, 15, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

Depends only on prime signature.
The non-maximal case is A096827.

Examples

			The maximal sets of pairwise indivisible divisors of n = 1, 2, 4, 8, 12, 24, 30, 32, 36, 48, 60 are:
   1   1   1   1   1     1      1         1    1       1       1
       2   2   2   12    24     30        2    36      48      60
           4   4   2,3   2,3    5,6       4    2,3     2,3     2,15
               8   3,4   3,4    2,15      8    2,9     3,4     3,20
                   4,6   3,8    3,10      16   3,4     3,8     4,30
                         4,6    2,3,5     32   4,18    4,6     5,12
                         6,8    6,10,15        9,12    6,8     2,3,5
                         8,12                  12,18   3,16    3,4,5
                                               4,6,9   6,16    4,5,6
                                                       8,12    3,4,10
                                                       12,16   6,15,20
                                                       16,24   10,12,15
                                                               12,15,20
                                                               12,20,30
                                                               4,6,10,15
		

Crossrefs

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Rest[Subsets[Divisors[n]]],stableQ[#,Divisible]&]]],{n,100}]

A327402 Quotient of n over the maximum stable divisor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 5, 1, 6, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 7, 3, 2, 1, 4, 1, 2, 7, 1, 5, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 6, 1, 5, 1, 2, 1, 12, 1, 2, 3, 8, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 8, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number is stable if its distinct prime indices are pairwise indivisible. Stable numbers are listed in A316476.

Examples

			The stable divisors of 60 are {1, 2, 3, 4, 5, 15}, so a(60) = 60/15 = 4.
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[n/Max[Select[Divisors[n],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]],{n,100}]
  • PARI
    A378442(n)={my(v=apply(primepi, factor(n)[, 1])); for(j=2, #v, for(i=1, j-1, if(v[j]%v[i]==0, return(0)))); 1}; \\ From the function "ok" in A316476 by Andrew Howroyd, Aug 26 2018
    A327402(n) = fordiv(n,d,if(A378442(n/d),return(d))); \\ Antti Karttunen, Jan 28 2025

Formula

a(n) = n/A327393(n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 28 2025

A327403 Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum stable divisor (A327393, A327402).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number is stable if its distinct prime indices are pairwise indivisible. Stable numbers are listed in A316476. The maximum stable divisor of n is A327393(n).

Examples

			We have 798 -> 42 -> 6 -> 2 -> 1, so a(798) = 4.
		

Crossrefs

See link for additional cross-references.
Positions of first appearance of each integer are A325782.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[FixedPointList[#/Max[Select[Divisors[#],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]]&,n]]-2,{n,100}]
  • PARI
    A327403(n) = for(k=0,oo,my(nextn=A327402(n)); if(nextn==n,return(k)); n = nextn); \\ Antti Karttunen, Jan 28 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 28 2025

A328678 Number of strict, pairwise indivisible, relatively prime integer partitions of n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 1, 2, 2, 4, 3, 5, 4, 5, 7, 10, 9, 12, 11, 14, 15, 22, 20, 25, 26, 32, 33, 44, 41, 54, 49, 62, 67, 80, 80, 100, 100, 118, 121, 152, 148, 179, 178, 210, 219, 267, 259, 316, 313, 363, 380, 449, 448, 529, 532, 619, 640, 745, 749, 867, 889
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2019

Keywords

Comments

Note that pairwise indivisibility implies strictness, but we include "strict" in the name in order to more clearly distinguish it from A328676 = "Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible".

Examples

			The a(1) = 1 through a(20) = 11 partitions (A..H = 10..20) (empty columns not shown):
  1  32  43  53  54  73   65  75   76  95   87   97   98    B7   A9    B9
         52      72  532  74  543  85  B3   B4   B5   A7    D5   B8    D7
                          83  732  94  743  D2   D3   B6    765  C7    H3
                          92       A3  752  654  754  C5    873  D6    875
                                   B2       753  853  D4    954  E5    965
                                                 952  E3    972  F4    974
                                                 B32  F2    B43  G3    A73
                                                      764   B52  H2    B54
                                                      A43   D32  865   B72
                                                      7532       964   D43
                                                                 B53   D52
                                                                 7543
		

Crossrefs

The Heinz numbers of these partitions are the squarefree terms of A328677.
The non-strict case is A328676.
Pairwise indivisible partitions are A303362.
Strict, relatively prime partitions are A078374.
A ranking function using binary indices is A328671.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]

Formula

Moebius transform of A303362.
Previous Showing 41-50 of 55 results. Next