cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A317852 Number of plane trees with n nodes where the sequence of branches directly under any given node is aperiodic, meaning its cyclic permutations are all different.

Original entry on oeis.org

1, 1, 1, 3, 8, 26, 76, 247, 783, 2565, 8447, 28256, 95168, 323720, 1108415, 3821144, 13246307, 46158480, 161574043, 567925140, 2003653016, 7092953340, 25186731980, 89690452750, 320221033370, 1146028762599, 4110596336036, 14774346783745, 53203889807764, 191934931634880
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Comments

Also the number of plane trees with n nodes where the sequence of branches directly under any given node has relatively prime run-lengths.

Examples

			The a(5) = 8 locally aperiodic plane trees:
  ((((o)))),
  (((o)o)), ((o(o))), (((o))o), (o((o))),
  ((o)oo), (o(o)o), (oo(o)).
The a(6) = 26 locally aperiodic plane trees:
  (((((o)))))  ((((o)o)))  (((o)oo))  ((o)ooo)
               (((o(o))))  ((o(o)o))  (o(o)oo)
               ((((o))o))  ((oo(o)))  (oo(o)o)
               ((o((o))))  (((o)o)o)  (ooo(o))
               ((((o)))o)  ((o(o))o)
               (o(((o))))  (o((o)o))
               (((o))(o))  (o(o(o)))
               ((o)((o)))  (((o))oo)
                           (o((o))o)
                           (oo((o)))
                           ((o)(o)o)
                           ((o)o(o))
                           (o(o)(o))
		

Crossrefs

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    aperplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[aperplane/@c],aperQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[aperplane[n]],{n,10}]
  • PARI
    Tfm(p, n)={sum(d=1, n, moebius(d)*(subst(1/(1+O(x*x^(n\d))-p), x, x^d)-1))}
    seq(n)={my(p=O(1)); for(i=1, n, p=1+Tfm(x*p, i)); Vec(p)} \\ Andrew Howroyd, Feb 08 2020

Extensions

a(16)-a(17) from Robert Price, Sep 15 2018
Terms a(18) and beyond from Andrew Howroyd, Feb 08 2020

A318046 a(n) is the number of initial subtrees (subtrees emanating from the root) of the unlabeled rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 3, 2, 5, 4, 5, 3, 4, 3, 7, 2, 4, 5, 3, 4, 5, 5, 6, 3, 10, 4, 9, 3, 5, 7, 6, 2, 9, 4, 7, 5, 4, 3, 7, 4, 5, 5, 4, 5, 13, 6, 8, 3, 5, 10, 7, 4, 3, 9, 13, 3, 5, 5, 5, 7, 6, 6, 9, 2, 10, 9, 4, 4, 11, 7, 5, 5, 6, 4, 19, 3, 9, 7, 6, 4, 17, 5, 7, 5
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

We require that an initial subtree contain either all or none of the branchings under any given node.

Examples

			70 is the Matula-Goebel number of the tree (o((o))(oo)), which has 7 distinct initial subtrees: {o, (ooo), (oo(oo)), (o(o)o), (o(o)(oo)), (o((o))o), (o((o))(oo))}. So a(70) = 7.
		

Crossrefs

Programs

  • Mathematica
    si[n_]:=If[n==1,1,1+Product[si[PrimePi[b[[1]]]]^b[[2]],{b,FactorInteger[n]}]];
    Array[si,100]

Formula

a(1) = 1 and if n > 1 has prime factorization n = prime(x_1)^y_1 * ... * prime(x_k)^y_k then a(n) = 1 + a(x_1)^y_1 * ... * a(x_k)^y_k.

A303552 Number of periodic multisets of compositions of total weight n.

Original entry on oeis.org

0, 1, 1, 3, 1, 9, 1, 18, 7, 44, 1, 119, 1, 246, 48, 585, 1, 1470, 1, 3248, 250, 7535, 1, 18114, 42, 40593, 1373, 93726, 1, 218665, 1, 493735, 7539, 1127981, 285, 2587962, 1, 5841445, 40597, 13244166, 1, 30047413, 1, 67604050, 216745, 152258273, 1, 342747130
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is periodic if its multiplicities have a common divisor greater than 1.

Examples

			The a(6) = 9 periodic multisets of compositions are:
{1,1,1,1,1,1},
{1,1,2,2}, {1,1,11,11},
{2,2,2}, {11,11,11},
{3,3}, {21,21}, {12,12}, {111,111}.
		

Crossrefs

Programs

  • Mathematica
    nn=60;
    ser=Product[1/(1-x^n)^2^(n-1),{n,nn}]
    Table[SeriesCoefficient[ser,{x,0,n}]-Sum[MoebiusMu[d]*SeriesCoefficient[ser,{x,0,n/d}],{d,Divisors[n]}],{n,1,nn}]

A303553 Number of periodic factorizations of n > 1 into positive factors greater than 1; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is periodic if its multiplicities have a common divisor greater than 1.

Examples

			The a(64)  = 4 periodic factorizations are (2*2*2*2*2*2), (2*2*4*4), (4*4*4), (8*8).
The a(144) = 4 periodic factorizations are (2*2*2*2*3*3), (2*2*6*6), (3*3*4*4), (12*12).
The a(256) = 5 periodic factorizations are (2*2*2*2*2*2*2*2), (2*2*2*2*4*4), (2*2*8*8), (4*4*4*4), (16*16).
The a(576) = 7 periodic factorizations are (2*2*2*2*2*2*3*3), (2*2*2*2*6*6), (2*2*3*3*4*4), (2*2*12*12), (3*3*8*8), (4*4*6*6), (24*24).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],GCD@@Length/@Split[#]>1&]],{n,2,100}]
  • PARI
    gcd_of_multiplicities(lista) = { my(u=length(lista)); if(u<2, u, my(g=0, pe = lista[1], j=1); for(i=2,u,if(lista[i]==pe, j++, g = gcd(j,g); j=1; pe = lista[i])); gcd(g,j)); }; \\ the supplied lista (newfacs) should be monotonic
    A303553(n, m=n, facs=List([])) = if(1==n, (gcd_of_multiplicities(facs)!=1), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A303553(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) >= A303709(n). - Antti Karttunen, Dec 06 2018

Extensions

a(1) = 1 prepended by Antti Karttunen, Dec 06 2018

A324841 Matula-Goebel numbers of fully recursively anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 35, 49, 51, 53, 57, 59, 63, 64, 67, 73, 77, 81, 83, 85, 95, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 149, 153, 159, 161, 171, 175, 177, 187, 189, 201, 209, 217, 227, 233, 241, 243, 245
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree.

Examples

			The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  49: ((oo)(oo))
  51: ((o)((oo)))
  53: ((oooo))
  57: ((o)(ooo))
  59: ((((oo))))
  63: ((o)(o)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]];
    Select[Range[100],fratQ]

A304450 Numbers that are not perfect powers and whose prime factors span an initial interval of prime numbers.

Original entry on oeis.org

2, 6, 12, 18, 24, 30, 48, 54, 60, 72, 90, 96, 108, 120, 150, 162, 180, 192, 210, 240, 270, 288, 300, 360, 384, 420, 432, 450, 480, 486, 540, 600, 630, 648, 720, 750, 768, 810, 840, 864, 960, 972, 1050, 1080, 1152, 1200, 1260, 1350, 1440, 1458, 1470, 1500, 1536
Offset: 1

Views

Author

Gus Wiseman, May 12 2018

Keywords

Comments

The multiset of prime indices of a(n) is the a(n)-th row of A112798. This multiset is normal, meaning it spans an initial interval of positive integers, and aperiodic, meaning its multiplicities are relatively prime.

Examples

			Sequence of all normal aperiodic multisets begins
2:   {1}
6:   {1,2}
12:  {1,1,2}
18:  {1,2,2}
24:  {1,1,1,2}
30:  {1,2,3}
48:  {1,1,1,1,2}
54:  {1,2,2,2}
60:  {1,1,2,3}
72:  {1,1,1,2,2}
90:  {1,2,2,3}
96:  {1,1,1,1,1,2}
108: {1,1,2,2,2}
120: {1,1,1,2,3}
150: {1,2,3,3}
162: {1,2,2,2,2}
180: {1,1,2,2,3}
192: {1,1,1,1,1,1,2}
210: {1,2,3,4}
240: {1,1,1,1,2,3}
270: {1,2,2,2,3}
288: {1,1,1,1,1,2,2}
300: {1,1,2,3,3}
360: {1,1,1,2,2,3}
384: {1,1,1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],FactorInteger[#][[-1,1]]==Prime[Length[FactorInteger[#]]]&&GCD@@FactorInteger[#][[All,2]]===1&]
  • PARI
    ok(n)={my(f=factor(n)[,1]); #f && !ispower(n) && #f==primepi(f[#f])} \\ Andrew Howroyd, Aug 26 2018

Formula

Intersection of A007916 and A055932.

A319271 Number of series-reduced locally non-intersecting aperiodic rooted trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 3, 9, 12, 27, 42, 91, 151, 312, 550, 1099, 2026, 3999, 7527, 14804, 28336, 55641, 107737, 211851, 413508, 814971, 1600512, 3162761, 6241234
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and aperiodic if the multiplicities in the multiset of branches directly under any given node are relatively prime, and locally non-intersecting if the branches directly under any given node with more than one branch have empty intersection.

Examples

			The a(8) = 9 rooted trees:
  (o(o(o(o))))
  (o(o(o)(o)))
  (o(ooo(o)))
  (oo(oo(o)))
  (o(o)(o(o)))
  (ooo(o(o)))
  (o(o)(o)(o))
  (ooo(o)(o))
  (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    btrut[n_]:=btrut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[btrut/@c]]]/@IntegerPartitions[n-1],And[Intersection@@#=={},GCD@@Length/@Split[#]==1]&]];
    Table[Length[btrut[n]],{n,30}]

A304623 Regular triangle where T(n,k) is the number of aperiodic multisets with maximum k that fit within some normal multiset of weight n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 11, 8, 1, 10, 21, 27, 16, 1, 12, 38, 61, 63, 32, 1, 18, 57, 120, 162, 143, 64, 1, 22, 87, 205, 347, 409, 319, 128, 1, 28, 122, 333, 651, 950, 1000, 703, 256, 1, 32, 164, 506, 1132, 1926, 2504, 2391, 1535, 512, 1, 42, 217, 734, 1840
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and is aperiodic if its multiplicities are relatively prime.

Examples

			Triangle begins:
1
1    2
1    4    4
1    6   11    8
1   10   21   27   16
1   12   38   61   63   32
1   18   57  120  162  143   64
1   22   87  205  347  409  319  128
The a(4,3) = 11 multisets are (3), (13), (23), (113), (123), (133), (223), (233), (1123), (1223), (1233).
		

Crossrefs

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length/@GatherBy[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&],Max],{n,10}]
  • PARI
    T(n,k) = sum(j=1, n, sumdiv(j, d, sum(i=max(1, j+k-n), d, moebius(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1)))) \\ Andrew Howroyd, Jan 20 2023

Formula

T(n,k) = Sum_{j=1..n} Sum_{d|j} Sum_{i=max(1, j+k-n)..d} mu(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1). - Andrew Howroyd, Jan 20 2023

A319270 Numbers that are 1 or whose prime indices are relatively prime and belong to the sequence, and whose prime multiplicities are also relatively prime.

Original entry on oeis.org

1, 2, 6, 12, 18, 24, 26, 48, 52, 54, 72, 74, 78, 96, 104, 108, 122, 148, 156, 162, 178, 192, 202, 208, 222, 234, 244, 288, 296, 312, 338, 356, 366, 384, 404, 416, 432, 444, 446, 468, 478, 486, 488, 502, 534, 592, 606, 624, 648, 666, 702, 712, 718, 732, 746
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

Also Matula-Goebel numbers of series-reduced locally non-intersecting aperiodic rooted trees.

Examples

			The sequence of Matula-Goebel trees of elements of this sequence begins:
   1: o
   2: (o)
   6: (o(o))
  12: (oo(o))
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  48: (oooo(o))
  52: (oo(o(o)))
  54: (o(o)(o)(o))
  72: (ooo(o)(o))
  74: (o(oo(o)))
  78: (o(o)(o(o)))
  96: (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ain[n_]:=Or[n==1,And[GCD@@primeMS[n]==1,GCD@@Length/@Split[primeMS[n]]==1,And@@ain/@primeMS[n]]];
    Select[Range[100],ain]

A317720 Numbers that are not uniform relatively prime tree numbers.

Original entry on oeis.org

9, 12, 18, 20, 21, 23, 24, 25, 27, 28, 37, 39, 40, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 60, 61, 63, 65, 68, 69, 71, 72, 73, 74, 75, 76, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 99, 103, 104, 107, 108, 111, 112, 115, 116, 117, 120, 121, 122, 124
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
   9: ((o)(o))
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  23: (((o)(o)))
  24: (ooo(o))
  25: (((o))((o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  37: ((oo(o)))
  39: ((o)(o(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[200],!rupQ[#]&]
Previous Showing 31-40 of 40 results.