cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 85 results. Next

A320459 MM-numbers of labeled multigraphs spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 169, 377, 611, 1363, 1937, 2021, 2117, 2197, 4901, 7943, 10933, 16211, 17719, 25181, 26273, 27521, 28561, 28717, 39527, 44603, 56173, 58609, 61393, 63713, 64061, 83291, 86903, 91031, 91039, 94987, 99499, 103259, 141401, 142129, 143663, 146653, 147533
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
      1: {}
     13: {{1,2}}
    169: {{1,2},{1,2}}
    377: {{1,2},{1,3}}
    611: {{1,2},{2,3}}
   1363: {{1,3},{2,3}}
   1937: {{1,2},{3,4}}
   2021: {{1,4},{2,3}}
   2117: {{1,3},{2,4}}
   2197: {{1,2},{1,2},{1,2}}
   4901: {{1,2},{1,2},{1,3}}
   7943: {{1,2},{1,2},{2,3}}
  10933: {{1,2},{1,3},{1,3}}
  16211: {{1,2},{1,3},{1,4}}
  17719: {{1,2},{1,3},{2,3}}
  25181: {{1,2},{1,2},{3,4}}
  26273: {{1,2},{1,4},{2,3}}
  27521: {{1,2},{1,3},{2,4}}
  28561: {{1,2},{1,2},{1,2},{1,2}}
  28717: {{1,2},{2,3},{2,3}}
  39527: {{1,3},{1,3},{2,3}}
  44603: {{1,2},{2,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[100000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]

A322337 Number of strict 2-edge-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 10, 5, 11, 1, 18, 3, 17, 8, 22, 3, 35, 5, 32, 17, 39, 16, 59, 14, 58, 33, 75, 28, 103, 35, 106, 71, 125, 63, 174, 81, 192, 127, 220, 130, 294, 170, 325, 237, 378, 257, 504
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part.

Examples

			The a(24) = 18 strict 2-edge-connected integer partitions of 24:
  (15,9)   (10,8,6)   (10,8,4,2)
  (16,8)   (12,8,4)   (12,6,4,2)
  (18,6)   (12,9,3)
  (20,4)   (14,6,4)
  (21,3)   (14,8,2)
  (22,2)   (15,6,3)
  (14,10)  (16,6,2)
           (18,4,2)
           (12,10,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,twoedQ[primeMS/@#]]&]],{n,30}]

A371294 Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their prime indices of binary indices begin:
    1: {{}}
    2: {{1}}
    4: {{2}}
    8: {{1,1}}
   16: {{3}}
   32: {{1,2}}
   40: {{1,1},{1,2}}
   64: {{4}}
  128: {{1,1,1}}
  160: {{1,2},{1,1,1}}
  256: {{2,2}}
  288: {{1,2},{2,2}}
  296: {{1,1},{1,2},{2,2}}
  416: {{1,2},{1,1,1},{2,2}}
  512: {{1,3}}
  520: {{1,1},{1,3}}
  544: {{1,2},{1,3}}
  552: {{1,1},{1,2},{1,3}}
  640: {{1,1,1},{1,3}}
  672: {{1,2},{1,1,1},{1,3}}
  800: {{1,2},{2,2},{1,3}}
  808: {{1,1},{1,2},{2,2},{1,3}}
  928: {{1,2},{1,1,1},{2,2},{1,3}}
		

Crossrefs

Connected case of A087086, relatively prime A328671.
For binary indices of binary indices we have A326750, non-primitive A326749.
For prime indices of prime indices we have A329559, non-primitive A305078.
Primitive case of A371291 = positions of ones in A371452.
For binary indices of prime indices we have A371445, non-primitive A325118.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]

Formula

Intersection of A087086 and A371291.

A317078 Number of connected multiset partitions of strongly normal multisets of size n.

Original entry on oeis.org

1, 1, 3, 6, 18, 46, 172, 563, 2347
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(3) = 6 connected multiset partitions are (111), (1)(11), (1)(1)(1), (112), (1)(12), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Length/@Table[Join@@Table[Select[mps[m],Length[csm[#]]==1&],{m,strnorm[n]}],{n,8}]

A329552 Smallest MM-number of a connected set of n sets.

Original entry on oeis.org

1, 2, 39, 195, 5655, 62205, 2674815
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
        1: {}
        2: {{}}
       39: {{1},{1,2}}
      195: {{1},{2},{1,2}}
     5655: {{1},{2},{1,2},{1,3}}
    62205: {{1},{2},{3},{1,2},{1,3}}
  2674815: {{1},{2},{3},{1,2},{1,3},{1,4}}
		

Crossrefs

MM-numbers of connected set-systems are A328514.
The weight of the system with MM-number n is A302242(n).
Connected numbers are A305078.
Maximum connected divisor is A327076.
BII-numbers of connected sets of sets are A326749.
The smallest BII-number of a connected set of n sets is A329625(n).
Allowing edges to have repeated vertices gives A329553.
Requiring the edges to form an antichain gives A329555.
The smallest MM-number of a set of n nonempty sets is A329557(n).
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    da=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&];
    Table[da[[Position[PrimeOmega/@da,n][[1,1]]]],{n,First[Split[Union[PrimeOmega/@da],#2==#1+1&]]}]

A329555 Smallest MM-number of a clutter (connected antichain) of n distinct sets.

Original entry on oeis.org

1, 2, 377, 16211, 761917
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
       1: {}
       2: {{}}
     377: {{1,2},{1,3}}
   16211: {{1,2},{1,3},{1,4}}
  761917: {{1,2},{1,3},{1,4},{2,3}}
		

Crossrefs

Spanning cutters of distinct sets are counted by A048143.
MM-numbers of connected weak-antichains are A329559.
MM-numbers of sets of sets are A302494.
The smallest BII-number of a clutter with n edges is A329627.
Not requiring the edges to form an antichain gives A329552.
Connected numbers are A305078.
Stable numbers are A316476.
Other MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
    Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]

A329558 Product of primes indexed by the first n squarefree numbers.

Original entry on oeis.org

1, 2, 6, 30, 330, 4290, 72930, 2114970, 65564070, 2688126870, 115589455410, 5432704404270, 320529559851930, 21475480510079310, 1567710077235789630, 123849096101627380770, 10279474976435072603910, 1038226972619942332994910, 113166740015573714296445190, 12787841621759829715498306470
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. Then a(n) is the smallest MM-number of a set of n sets.

Examples

			The sequence of terms together with their corresponding systems begins:
        1: {}
        2: {{}}
        6: {{},{1}}
       30: {{},{1},{2}}
      330: {{},{1},{2},{3}}
     4290: {{},{1},{2},{3},{1,2}}
    72930: {{},{1},{2},{3},{1,2},{4}}
  2114970: {{},{1},{2},{3},{1,2},{4},{1,3}}
		

Crossrefs

The smallest BII-number of a set of n sets is A000225(n).
MM-numbers of sets of sets are A302494.
The case without empty edges is A329557.
The case without singletons is A329556.
The case without empty edges or singletons is A329554.
The connected version is A329552.
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    sqvs=Select[Range[30],SquareFreeQ];
    Table[Times@@Prime/@Take[sqvs,k],{k,0,Length[sqvs]}]

Formula

a(n > 0) = 2 * A329557(n - 1).
a(n) = Product_{i = 1..n} prime(A005117(i)).

Extensions

a(19) from Jinyuan Wang, Feb 24 2020

A322306 Number of connected divisors of n. Number of connected submultisets of the n-th multiset multisystem (A302242).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 3, 2, 1, 4, 1, 2, 3, 2, 1, 2, 2, 3, 2, 2, 1, 4, 2, 2, 3, 2, 1, 3, 1, 2, 5, 1, 3, 3, 1, 2, 2, 3, 1, 3, 1, 2, 3, 2, 2, 4, 1, 2, 4, 2, 1, 4, 2, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer is connected if its prime indices are connected (see A305078).

Examples

			The a(1365) = 12 divisors are 3, 5, 7, 13, 21, 39, 65, 91, 195, 273, 455, 1365. These correspond to the following connected submultisets of {{1},{2},{1,1},{1,2}}.
     3: {{1}}
     5: {{2}}
     7: {{1,1}}
    13: {{1,2}}
    21: {{1},{1,1}}
    39: {{1},{1,2}}
    65: {{2},{1,2}}
    91: {{1,1},{1,2}}
   195: {{1},{2},{1,2}}
   273: {{1},{1,1},{1,2}}
   455: {{2},{1,1},{1,2}}
  1365: {{1},{2},{1,1},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Union[Subsets[primeMS[n]]],Length[zsm[#]]==1&]],{n,50}]

A322307 Number of multisets in the swell of the n-th multiset multisystem.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2018

Keywords

Comments

First differs from A001221 at a(91) = 3, A001221(91) = 2.
The swell of a multiset partition is the set of possible joins of its connected submultisets, where the multiplicity of a vertex in the join of a set of multisets is the maximum multiplicity of the same vertex among the parts. For example the swell of {{1,1},{1,2},{2,2}} is:
{1,1}
{1,2}
{2,2}
{1,1,2}
{1,2,2}
{1,1,2,2}

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zwell[y_]:=Union[y,Join@@Cases[Subsets[Union[y],{2}],{x_,z_}?(GCD@@#>1&):>zwell[Sort[Append[Fold[DeleteCases[#1,#2,{1},1]&,y,{x,z}],LCM[x,z]]]]]];
    Table[Length[zwell[primeMS[n]]],{n,100}]

A322388 Heinz numbers of 2-vertex-connected integer partitions.

Original entry on oeis.org

13, 29, 37, 39, 43, 47, 61, 65, 71, 73, 79, 87, 89, 91, 101, 107, 111, 113, 117, 129, 137, 139, 149, 151, 163, 167, 169, 173, 181, 183, 185, 193, 195, 197, 199, 203, 213, 223, 229, 233, 235, 237, 239, 247, 251, 257, 259, 261, 263, 267, 269, 271, 273, 281
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is 2-vertex-connected if the prime factorizations of the parts form a connected hypergraph that is still connected if any single prime number is divided out of all the parts (and any parts then equal to 1 are removed).

Examples

			The sequence of all 2-vertex-connected integer partitions begins: (1), (6), (10), (12), (6,2), (14), (15), (18), (6,3), (20), (21), (22), (10,2), (24), (6,4), (26), (28), (12,2), (30), (6,2,2), (14,2), (33), (34), (35), (36), (38), (39), (6,6), (40), (42), (18,2), (12,3), (44), (6,3,2), (45), (46).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]]
    Select[Range[100],vertConn[primeMS[#]]>1&]
Previous Showing 31-40 of 85 results. Next