cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A368421 Number of non-isomorphic set multipartitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 7, 16, 47, 116, 325, 861
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets Y, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 set multipartitions:
  {{1},{1}}  {{1},{1},{1}}  {{1},{1},{2,3}}    {{1},{1},{2,3,4}}
             {{1},{2},{2}}  {{1},{2},{1,2}}    {{2},{1,2},{1,2}}
                            {{2},{2},{1,2}}    {{3},{3},{1,2,3}}
                            {{1},{1},{1},{1}}  {{1},{1},{1},{2,3}}
                            {{1},{1},{2},{2}}  {{1},{1},{3},{2,3}}
                            {{1},{2},{2},{2}}  {{1},{2},{2},{1,2}}
                            {{1},{2},{3},{3}}  {{1},{2},{2},{3,4}}
                                               {{1},{2},{3},{2,3}}
                                               {{1},{3},{3},{2,3}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
                                               {{1},{1},{2},{2},{2}}
                                               {{1},{2},{2},{2},{2}}
                                               {{1},{2},{2},{3},{3}}
                                               {{1},{2},{3},{3},{3}}
                                               {{1},{2},{3},{4},{4}}
		

Crossrefs

The case of unlabeled graphs is A140637, complement A134964.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A367867, complement A133686.
With distinct edges we have A368094 connected A368409.
The complement with distinct edges is A368095, connected A368410.
Allowing repeated elements gives A368097, ranks A355529.
The complement allowing repeats is A368098, ranks A368100.
Factorizations of this type are counted by A368413, complement A368414.
The complement is counted by A368422.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A306007 Number of non-isomorphic intersecting antichains of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 14, 22
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other. The weight of S is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(8) = 14 set-systems:
{{1,2,3,4,5,6,7,8}}
{{1,7},{2,3,4,5,6,7}}
{{1,2,7},{3,4,5,6,7}}
{{1,5,6},{2,3,4,5,6}}
{{1,2,3,7},{4,5,6,7}}
{{1,2,5,6},{3,4,5,6}}
{{1,3,4,5},{2,3,4,5}}
{{1,2},{1,3,4},{2,3,4}}
{{1,4},{1,5},{2,3,4,5}}
{{1,5},{2,4,5},{3,4,5}}
{{1,6},{2,6},{3,4,5,6}}
{{1,6},{2,3,6},{4,5,6}}
{{2,4},{1,2,5},{3,4,5}}
{{1,5},{2,5},{3,5},{4,5}}
		

Crossrefs

A330056 Number of set-systems with n vertices and no singletons or endpoints.

Original entry on oeis.org

1, 1, 1, 6, 1724, 66963208, 144115175600855641, 1329227995784915809349010517957163445, 226156424291633194186662080095093568675422295082604716043360995547325655259
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(3) = 6 set-systems:
  {}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The version for non-isomorphic set-systems is A330055 (by weight).
The covering case is A330057.
Set-systems with no singletons are A016031.
Set-systems with no endpoints are A330059.
Non-isomorphic set-systems with no singletons are A306005 (by weight).
Non-isomorphic set-systems with no endpoints are A330054, (by weight).
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    \\ Here AS2(n,k) is A008299 (associated Stirling of 2nd kind)
    AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))} \\ Andrew Howroyd, Jan 16 2023

Formula

Binomial transform of A330057.
a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} Sum_{i=0..k-2*j} (-1)^k * binomial(n,k) * 2^(2^(n-k)-(n-k)-1) * binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) where AS2(n,k) are the associated Stirling numbers of the 2nd kind (A008299). - Andrew Howroyd, Jan 16 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023

A306008 Number of non-isomorphic intersecting set-systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 10, 21, 39, 78
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 7 set-systems:
{{1,2,3,4,5,6}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

A330053 Number of non-isomorphic set-systems of weight n with at least one singleton.

Original entry on oeis.org

0, 1, 1, 3, 6, 14, 32, 79, 193, 499, 1321, 3626, 10275, 30126, 91062, 284093, 912866, 3018825, 10261530, 35814255, 128197595, 470146011, 1764737593, 6773539331, 26561971320, 106330997834, 434195908353, 1807306022645, 7663255717310, 33079998762373
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers. An singleton is an edge of size 1. The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions:
  {1}  {1}{2}  {1}{12}    {1}{123}      {1}{1234}
               {1}{23}    {1}{234}      {1}{2345}
               {1}{2}{3}  {1}{2}{12}    {1}{12}{13}
                          {1}{2}{13}    {1}{12}{23}
                          {1}{2}{34}    {1}{12}{34}
                          {1}{2}{3}{4}  {1}{2}{123}
                                        {1}{2}{134}
                                        {1}{2}{345}
                                        {1}{23}{45}
                                        {2}{13}{14}
                                        {1}{2}{3}{12}
                                        {1}{2}{3}{14}
                                        {1}{2}{3}{45}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

The complement is counted by A306005.
The multiset partition version is A330058.
Non-isomorphic set-systems with at least one endpoint are A330052.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A283877 = A@283877;
    A306005 = A@306005;
    a[n_] := A283877[[n + 1]] - A306005[[n + 1]];
    a /@ Range[0, 50] (* Jean-François Alcover, Feb 09 2020 *)

Formula

a(n) = A283877(n) - A306005(n). - Jean-François Alcover, Feb 09 2020

A330059 Number of set-systems with n vertices and no endpoints.

Original entry on oeis.org

1, 1, 2, 63, 29471, 2144945976, 9223371624669871587, 170141183460469227599616678821978424151, 57896044618658097711785492504343953752410420469299789800819363538011879603532
Offset: 0

Views

Author

Gus Wiseman, Dec 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(2) = 2 set-systems are {} and {{1},{2},{1,2}}. The a(3) = 63 set-systems are:
  0                 {2}{3}{12}{13}       {1}{3}{12}{13}{23}
  {1}{2}{12}        {2}{12}{13}{23}      {2}{3}{12}{13}{23}
  {1}{3}{13}        {2}{3}{12}{123}      {1}{2}{12}{23}{123}
  {2}{3}{23}        {2}{3}{13}{123}      {1}{2}{13}{23}{123}
  {12}{13}{23}      {3}{12}{13}{23}      {1}{3}{12}{13}{123}
  {1}{23}{123}      {1}{13}{23}{123}     {1}{3}{12}{23}{123}
  {2}{13}{123}      {2}{12}{13}{123}     {1}{3}{13}{23}{123}
  {3}{12}{123}      {2}{12}{23}{123}     {2}{3}{12}{13}{123}
  {12}{13}{123}     {2}{13}{23}{123}     {2}{3}{12}{23}{123}
  {12}{23}{123}     {3}{12}{13}{123}     {2}{3}{13}{23}{123}
  {13}{23}{123}     {3}{12}{23}{123}     {1}{12}{13}{23}{123}
  {1}{2}{13}{23}    {3}{13}{23}{123}     {2}{12}{13}{23}{123}
  {1}{2}{3}{123}    {12}{13}{23}{123}    {3}{12}{13}{23}{123}
  {1}{3}{12}{23}    {1}{2}{3}{12}{13}    {1}{2}{3}{12}{13}{23}
  {1}{12}{13}{23}   {1}{2}{3}{12}{23}    {1}{2}{3}{12}{13}{123}
  {1}{2}{13}{123}   {1}{2}{3}{13}{23}    {1}{2}{3}{12}{23}{123}
  {1}{2}{23}{123}   {1}{2}{12}{13}{23}   {1}{2}{3}{13}{23}{123}
  {1}{3}{12}{123}   {1}{2}{3}{12}{123}   {1}{2}{12}{13}{23}{123}
  {1}{3}{23}{123}   {1}{2}{3}{13}{123}   {1}{3}{12}{13}{23}{123}
  {1}{12}{13}{123}  {1}{2}{3}{23}{123}   {2}{3}{12}{13}{23}{123}
  {1}{12}{23}{123}  {1}{2}{12}{13}{123}  {1}{2}{3}{12}{13}{23}{123}
		

Crossrefs

The case with no singletons is A330056.
The unlabeled version is A330054 (by weight) or A330124 (by vertices).
Set-systems with no singletons are A016031.
Non-isomorphic set-systems with no singletons are A306005 (by weight).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-1)*sum(j=0, k, stirling(k,j,2)*2^(j*(n-k)) ))} \\ Andrew Howroyd, Jan 16 2023

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^k * binomial(n,k) * 2^(2^(n-k)-1) * Stirling2(k,j) * 2^(j*(n-k)). - Andrew Howroyd, Jan 16 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023

A330057 Number of set-systems covering n vertices with no singletons or endpoints.

Original entry on oeis.org

1, 0, 0, 5, 1703, 66954642, 144115175199102143, 1329227995784915808340204290157341181, 226156424291633194186662080095093568664788471116325389572604136316742486364
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(3) = 5 set-systems:
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The version for non-isomorphic set-systems is A330055 (by weight).
The non-covering version is A330056.
Set-systems with no singletons are A016031.
Set-systems with no endpoints are A330059.
Non-isomorphic set-systems with no singletons are A306005 (by weight).
Non-isomorphic set-systems with no endpoints are A330054 (by weight).
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    \\ here b(n) is A330056(n).
    AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
    b(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))}
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*b(n-k))} \\ Andrew Howroyd, Jan 16 2023

Formula

Binomial transform is A330056.

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023

A321176 Number of integer partitions of n that are the vertex-degrees of some set system with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 7, 10, 15, 21, 28
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.

Examples

			The a(2) = 1 through a(9) = 15 partitions:
  (11)  (111)  (211)   (221)    (222)     (322)      (2222)      (333)
               (1111)  (2111)   (2211)    (2221)     (3221)      (3222)
                       (11111)  (3111)    (3211)     (3311)      (3321)
                                (21111)   (22111)    (22211)     (4221)
                                (111111)  (31111)    (32111)     (22221)
                                          (211111)   (41111)     (32211)
                                          (1111111)  (221111)    (33111)
                                                     (311111)    (42111)
                                                     (2111111)   (222111)
                                                     (11111111)  (321111)
                                                                 (411111)
                                                                 (2211111)
                                                                 (3111111)
                                                                 (21111111)
                                                                 (111111111)
The a(8) = 10 integer partitions together with a realizing set system for each (the parts of the partition count the appearances of each vertex in the set system):
     (41111): {{1,2},{1,3},{1,4},{1,5}}
      (3311): {{1,2},{1,2,3},{1,2,4}}
      (3221): {{1,2},{1,3},{1,2,3,4}}
     (32111): {{1,2},{1,3},{1,2,4,5}}
    (311111): {{1,2},{1,3},{1,4,5,6}}
      (2222): {{1,2},{3,4},{1,2,3,4}}
     (22211): {{1,2,3},{1,2,3,4,5}}
    (221111): {{1,2},{1,2,3,4,5,6}}
   (2111111): {{1,2},{1,3,4,5,6,7}}
  (11111111): {{1,2,3,4,5,6,7,8}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[n],hyp[#]!={}&]],{n,8}]

A330124 Number of unlabeled set-systems with n vertices and no endpoints.

Original entry on oeis.org

1, 1, 2, 22, 1776
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. An endpoint is a vertex appearing only once (degree 1).

Examples

			Non-isomorphic representatives of the a(3) = 22 set-systems:
  0
  {1}{2}{12}
  {12}{13}{23}
  {1}{23}{123}
  {12}{13}{123}
  {1}{2}{13}{23}
  {1}{2}{3}{123}
  {1}{12}{13}{23}
  {1}{2}{13}{123}
  {1}{12}{13}{123}
  {1}{12}{23}{123}
  {12}{13}{23}{123}
  {1}{2}{3}{12}{13}
  {1}{2}{12}{13}{23}
  {1}{2}{3}{12}{123}
  {1}{2}{12}{13}{123}
  {1}{2}{13}{23}{123}
  {1}{12}{13}{23}{123}
  {1}{2}{3}{12}{13}{23}
  {1}{2}{3}{12}{13}{123}
  {1}{2}{12}{13}{23}{123}
  {1}{2}{3}{12}{13}{23}{123}
		

Crossrefs

Partial sums of the covering case A330196.
The labeled version is A330059.
The "multi" version is A302545.
Unlabeled set-systems with no endpoints counted by weight are A330054.
Unlabeled set-systems with no singletons are A317794.
Unlabeled set-systems counted by vertices are A000612.
Unlabeled set-systems counted by weight are A283877.
The case with no singletons is A320665.

A368096 Triangle read by rows where T(n,k) is the number of non-isomorphic set-systems of length k and weight n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 5, 8, 3, 1, 0, 1, 8, 18, 13, 3, 1, 0, 1, 9, 32, 37, 15, 3, 1, 0, 1, 13, 55, 96, 59, 16, 3, 1, 0, 1, 14, 91, 209, 196, 74, 16, 3, 1, 0, 1, 19, 138, 449, 573, 313, 82, 16, 3, 1, 0, 1, 20, 206, 863, 1529, 1147, 403, 84, 16, 3, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 28 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets.
Conjecture: Column k = 2 is A101881.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   2   1
   0   1   4   3   1
   0   1   5   8   3   1
   0   1   8  18  13   3   1
   0   1   9  32  37  15   3   1
   0   1  13  55  96  59  16   3   1
   0   1  14  91 209 196  74  16   3   1
   0   1  19 138 449 573 313  82  16   3   1
   ...
Non-isomorphic representatives of the set-systems counted in row n = 5:
  .  {12345}  {1}{1234}  {1}{2}{123}  {1}{2}{3}{12}  {1}{2}{3}{4}{5}
              {1}{2345}  {1}{2}{134}  {1}{2}{3}{14}
              {12}{123}  {1}{2}{345}  {1}{2}{3}{45}
              {12}{134}  {1}{12}{13}
              {12}{345}  {1}{12}{23}
                         {1}{12}{34}
                         {1}{23}{24}
                         {1}{23}{45}
		

Crossrefs

Row sums are A283877, connected case A300913.
For multiset partitions we have A317533.
Counting connected components instead of edges gives A321194.
For set multipartitions we have A334550.
For strict multiset partitions we have A368099.
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A049311 counts non-isomorphic set multipartitions, connected A056156.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A316980 counts non-isomorphic strict multiset partitions, connected A319557.
A319559 counts non-isomorphic T_0 set-systems, connected A319566.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],UnsameQ@@#&&And@@UnsameQ@@@#&&Length[#]==k&]]], {n,0,5},{k,0,n}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    G(n)={my(s=0); forpart(q=n, my(p=sum(t=1, n, y^t*subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*exp(p-subst(subst(p, x, x^2), y, y^2))); s/n!}
    T(n)={[Vecrev(p) | p <- Vec(G(n))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

Extensions

Terms a(66) and beyond from Andrew Howroyd, Jan 11 2024
Previous Showing 21-30 of 35 results. Next