A365043 Number of subsets of {1..n} whose greatest element can be written as a (strictly) positive linear combination of the others.
0, 0, 1, 3, 7, 12, 21, 32, 49, 70, 99, 135, 185, 245, 323, 418, 541, 688, 873, 1094, 1368, 1693, 2092, 2564, 3138, 3810, 4620, 5565, 6696, 8012, 9569, 11381, 13518, 15980, 18872, 22194, 26075, 30535, 35711, 41627, 48473, 56290, 65283, 75533, 87298, 100631, 115911, 133219
Offset: 0
Keywords
Examples
The subset S = {3,4,9} has 9 = 3*3 + 0*4, but this is not strictly positive, so S is not counted under a(9). The subset S = {3,4,10} has 10 = 2*3 + 1*4, so S is counted under a(10). The a(0) = 0 through a(5) = 12 subsets: . . {1,2} {1,2} {1,2} {1,2} {1,3} {1,3} {1,3} {1,2,3} {1,4} {1,4} {2,4} {1,5} {1,2,3} {2,4} {1,2,4} {1,2,3} {1,3,4} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,5}
Links
- Bert Dobbelaere, Table of n, a(n) for n = 0..100
- Steven R. Finch, Monoids of natural numbers, March 17, 2009.
Programs
-
Mathematica
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Rest[Subsets[Range[n]]],combp[Last[#],Union[Most[#]]]!={}&]],{n,0,10}]
-
Python
from itertools import combinations from sympy.utilities.iterables import partitions def A365043(n): mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1)) return sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023
Formula
a(n) = 2^n - A365044(n).
Extensions
a(15)-a(35) from Chai Wah Wu, Nov 20 2023
More terms from Bert Dobbelaere, Apr 28 2025
Comments