cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 60 results. Next

A320387 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are nonincreasing, and first difference <= first part.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 3, 4, 5, 3, 5, 7, 4, 7, 8, 6, 8, 11, 7, 9, 13, 9, 11, 16, 12, 15, 18, 13, 17, 20, 17, 21, 24, 19, 24, 30, 22, 28, 34, 26, 34, 38, 30, 37, 43, 37, 42, 48, 41, 50, 58, 48, 55, 64, 53, 64, 71, 59, 73, 81, 69, 79, 89, 79, 90, 101, 87, 100, 111
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Generating function of the "second integrals" of partitions: given a partition (p_1, ..., p_s) written in weakly decreasing order, write the sequence B = (b_1, b_2, ..., b_s) = (p_1, p_1 + p_2, ..., p_1 + ... + p_s). The sequence gives the coefficients of the generating function summing q^(b_1 + ... + b_s) over all partitions of all nonnegative integers. - William J. Keith, Apr 23 2022
From Gus Wiseman, Jan 17 2023: (Start)
Equivalently, a(n) is the number of multisets (weakly increasing sequences of positive integers) with weighted sum n. For example, the Heinz numbers of the a(0) = 1 through a(15) = 7 multisets are:
1 2 3 4 7 6 8 10 15 12 16 18 20 26 24 28
5 11 9 17 19 14 21 22 27 41 30 32
13 23 29 31 33 55 39 34
25 35 37 43 45
49 77 47
65
121
These multisets are counted by A264034. The reverse version is A007294. The zero-based version is A359678.
(End)

Examples

			There are a(29) = 15 such partitions of 29:
  01: [29]
  02: [10, 19]
  03: [11, 18]
  04: [12, 17]
  05: [13, 16]
  06: [14, 15]
  07: [5, 10, 14]
  08: [6, 10, 13]
  09: [6, 11, 12]
  10: [7, 10, 12]
  11: [8, 10, 11]
  12: [3, 6, 9, 11]
  13: [5, 7, 8, 9]
  14: [2, 4, 6, 8, 9]
  15: [3, 5, 6, 7, 8]
There are a(30) = 18 such partitions of 30:
  01: [30]
  02: [10, 20]
  03: [11, 19]
  04: [12, 18]
  05: [13, 17]
  06: [14, 16]
  07: [5, 10, 15]
  08: [6, 10, 14]
  09: [6, 11, 13]
  10: [7, 10, 13]
  11: [7, 11, 12]
  12: [8, 10, 12]
  13: [3, 6, 9, 12]
  14: [9, 10, 11]
  15: [4, 7, 9, 10]
  16: [2, 4, 6, 8, 10]
  17: [6, 7, 8, 9]
  18: [4, 5, 6, 7, 8]
		

Crossrefs

Number of appearances of n > 0 in A304818, reverse A318283.
A053632 counts compositions by weighted sum.
A358194 counts partitions by weighted sum, reverse A264034.
Weighted sum of prime indices: A359497, A359676, A359682, A359754, A359755.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    Table[Length[Select[Range[2^n],ots[prix[#]]==n&]],{n,10}] (* Gus Wiseman, Jan 17 2023 *)
  • PARI
    seq(n)={Vec(sum(k=1, (sqrtint(8*n+1)+1)\2, my(t=binomial(k,2)); x^t/prod(j=1, k-1, 1 - x^(t-binomial(j,2)) + O(x^(n-t+1)))))} \\ Andrew Howroyd, Jan 22 2023
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320387(n)
      (0..n).map{|i| f(i)}
    end
    p A320387(50)
    

Formula

G.f.: Sum_{k>=1} x^binomial(k,2)/Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2))). - Andrew Howroyd, Jan 22 2023

A358136 Irregular triangle read by rows whose n-th row lists the partial sums of the prime indices of n (row n of A112798).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 1, 2, 3, 2, 4, 1, 4, 5, 1, 2, 4, 6, 1, 5, 2, 5, 1, 2, 3, 4, 7, 1, 3, 5, 8, 1, 2, 5, 2, 6, 1, 6, 9, 1, 2, 3, 5, 3, 6, 1, 7, 2, 4, 6, 1, 2, 6, 10, 1, 3, 6, 11, 1, 2, 3, 4, 5, 2, 7, 1, 8, 3, 7, 1, 2, 4, 6, 12, 1, 9, 2, 8, 1, 2, 3, 6, 13
Offset: 2

Views

Author

Gus Wiseman, Oct 31 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   2: 1
   3: 2
   4: 1 2
   5: 3
   6: 1 3
   7: 4
   8: 1 2 3
   9: 2 4
  10: 1 4
  11: 5
  12: 1 2 4
  13: 6
  14: 1 5
  15: 2 5
  16: 1 2 3 4
  17: 7
  18: 1 3 5
		

Crossrefs

Row-lengths are A001222.
First element in each row is A055396.
Last element in each row is A056239.
Rows are the partial sums of rows of A112798.
Row-sums are A318283.
Sorted Heinz numbers of the rows are A325362.
The version for standard compositions is A358134.
Rows are ranked by A358137.
A000041 counts partitions, strict A000009.
A003963 multiplies prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Accumulate[primeMS[n]],{n,30}]

A359361 Irregular triangle read by rows whose n-th row lists the partial sums of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 4, 3, 4, 5, 2, 3, 4, 6, 4, 5, 3, 5, 1, 2, 3, 4, 7, 2, 4, 5, 8, 3, 4, 5, 4, 6, 5, 6, 9, 2, 3, 4, 5, 3, 6, 6, 7, 2, 4, 6, 4, 5, 6, 10, 3, 5, 6, 11, 1, 2, 3, 4, 5, 5, 7, 7, 8, 4, 7, 2, 4, 5, 6, 12, 8, 9, 6, 8, 3, 4, 5, 6, 13
Offset: 2

Views

Author

Gus Wiseman, Dec 30 2022

Keywords

Comments

The partial sums of a sequence (a, b, c, ...) are (a, a+b, a+b+c, ...).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The partition with Heinz number n is the reversed n-th row of A112798.

Examples

			Triangle begins:
   2: 1
   3: 2
   4: 1 2
   5: 3
   6: 2 3
   7: 4
   8: 1 2 3
   9: 2 4
  10: 3 4
  11: 5
  12: 2 3 4
  13: 6
  14: 4 5
  15: 3 5
  16: 1 2 3 4
For example, the integer partition with Heinz number 90 is (3,2,2,1), so row n = 90 is (3,5,7,8).
		

Crossrefs

Row-lengths are A001222.
The version for standard compositions is A048793, non-reversed A358134.
Last element in each row is A056239.
First element in each row is A061395
Rows are the partial sums of rows of A296150.
Row-sums are A304818.
A reverse version is A358136, row sums A318283, Heinz numbers A358137.
The sorted Heinz numbers of rows are A359397.
A000041 counts partitions, strict A000009.
A112798 lists prime indices, product A003963.
A355536 lists differences of prime indices.

Programs

  • Maple
    T:= n-> ListTools[PartialSums](sort([seq(numtheory
           [pi](i[1])$i[2], i=ifactors(n)[2])], `>`))[]:
    seq(T(n), n=2..50);  # Alois P. Heinz, Jan 01 2023
  • Mathematica
    Table[Accumulate[Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,2,30}]

A264034 Triangle read by rows: T(n,k) (n>=0, 0<=k<=A161680(n)) is the number of integer partitions of n with weighted sum k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 3, 2, 1
Offset: 0

Views

Author

Christian Stump, Nov 01 2015

Keywords

Comments

Row sums give A000041.
The weighted sum is given by the sum of the rows where row i is weighted by i.
Note that the first part has weight 0. This statistic (zero-based weighted sum) is ranked by A359677, reverse A359674. Also the number of partitions of n with one-based weighted sum n + k. - Gus Wiseman, Jan 10 2023

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1,1;
  1,1,0,1;
  1,1,1,1,0,0,1;
  1,1,1,1,1,0,1,0,0,0,1;
  1,1,1,2,1,0,2,1,0,0,1,0,0,0,0,1;
  1,1,1,2,1,1,2,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1;
  1,1,1,2,2,1,2,2,1,1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1;
  ...
The a(15,31) = 5 partitions of 15 with weighted sum 31 are: (6,2,2,1,1,1,1,1), (5,4,1,1,1,1,1,1), (5,2,2,2,2,1,1), (4,3,2,2,2,2), (3,3,3,3,2,1). These are also the partitions of 15 with one-based weighted sum 46. - _Gus Wiseman_, Jan 09 2023
		

Crossrefs

Row sums are A000041.
The version for compositions is A053632, ranked by A124757 (reverse A231204).
Row lengths are A152947, or A161680 plus 1.
The one-based version is also A264034, if we use k = n..n(n+1)/2.
The reverse version A358194 counts partitions by sum of partial sums.
A359677 gives zero-based weighted sum of prime indices, reverse A359674.
A359678 counts multisets by zero-based weighted sum.

Programs

  • Maple
    b:= proc(n, i, w) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, w)+
          `if`(i>n, 0, x^(w*i)*b(n-i, i, w+1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 01 2015
  • Mathematica
    b[n_, i_, w_] := b[n, i, w] = Expand[If[n == 0, 1, If[i < 1, 0, b[n, i - 1, w] + If[i > n, 0, x^(w*i)*b[n - i, i, w + 1]]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==k&]],{n,0,8},{k,n,n*(n+1)/2}] (* Gus Wiseman, Jan 09 2023 *)

Formula

From Alois P. Heinz, Jan 20 2023: (Start)
max_{k=0..A161680(n)} T(n,k) = A337206(n).
Sum_{k=0..A161680(n)} k * T(n,k) = A066185(n). (End)

A318286 Number of strict multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 5, 5, 3, 9, 4, 7, 9, 15, 5, 18, 6, 16, 14, 10, 8, 31, 17, 14, 40, 25, 10, 34, 12, 52, 21, 19, 27, 70, 15, 25, 31, 59, 18, 57, 22, 38, 80, 33, 27, 120, 46, 67, 44, 56, 32, 172, 42, 100, 61, 43, 38, 141, 46, 55, 143, 203, 64, 91, 54, 80
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[strfacs[Times@@Prime/@nrmptn[n]]],{n,60}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
    count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=1/prod(i=1, #p, 1 - x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}
    a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 18 2018

Formula

a(n) = A045778(A181821(n)).
a(prime(n)^k) = A219585(n, k). - Andrew Howroyd, Dec 17 2018

A359755 Positions of first appearances in the sequence of weighted sums of prime indices (A304818).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 24, 26, 28, 36, 40, 46, 48, 50, 52, 56, 62, 68, 74, 76, 86, 88, 92, 94, 106, 107, 118, 122, 124, 131, 134, 136, 142, 146, 152, 158, 164, 166, 173, 178, 188, 193, 194, 199, 202, 206, 214, 218, 226, 229, 236, 239, 254
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    7: {4}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
		

Crossrefs

The version for standard compositions is A089633, zero-based A359756.
Positions of first appearances in A304818, reverse A318283.
The zero-based version is A359675, unsorted A359676.
The reverse zero-based version is A359680, unsorted A359681.
This is the sorted version of A359682, reverse A359679.
The reverse version is A359754.
A053632 counts compositions by weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=1000;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    seq=Table[ots[primeMS[n]],{n,1,nn}];
    Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]

A372427 Numbers whose binary indices and prime indices have the same sum.

Original entry on oeis.org

19, 33, 34, 69, 74, 82, 130, 133, 305, 412, 428, 436, 533, 721, 755, 808, 917, 978, 1036, 1058, 1062, 1121, 1133, 1143, 1341, 1356, 1630, 1639, 1784, 1807, 1837, 1990, 2057, 2115, 2130, 2133, 2163, 2260, 2324, 2328, 2354, 2358, 2512, 2534, 2627, 2771, 2825
Offset: 1

Views

Author

Gus Wiseman, May 01 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 130 are {2,8}, and the prime indices are {1,3,6}. Both sum to 10, so 130 is in the sequence.
The terms together with their prime indices begin:
   19: {8}
   33: {2,5}
   34: {1,7}
   69: {2,9}
   74: {1,12}
   82: {1,13}
  130: {1,3,6}
  133: {4,8}
  305: {3,18}
  412: {1,1,27}
  428: {1,1,28}
The terms together with their binary expansions and binary indices begin:
   19:      10011 ~ {1,2,5}
   33:     100001 ~ {1,6}
   34:     100010 ~ {2,6}
   69:    1000101 ~ {1,3,7}
   74:    1001010 ~ {2,4,7}
   82:    1010010 ~ {2,5,7}
  130:   10000010 ~ {2,8}
  133:   10000101 ~ {1,3,8}
  305:  100110001 ~ {1,5,6,9}
  412:  110011100 ~ {3,4,5,8,9}
  428:  110101100 ~ {3,4,6,8,9}
		

Crossrefs

For length instead of sum we get A071814.
Positions of zeros in A372428.
For maximum instead of sum we have A372436.
A003963 gives product of prime indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],Total[prix[#]]==Total[bix[#]]&]

A359042 Sum of partial sums of the n-th composition in standard order (A066099).

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 4, 6, 4, 7, 6, 9, 5, 8, 7, 10, 5, 9, 8, 12, 7, 11, 10, 14, 6, 10, 9, 13, 8, 12, 11, 15, 6, 11, 10, 15, 9, 14, 13, 18, 8, 13, 12, 17, 11, 16, 15, 20, 7, 12, 11, 16, 10, 15, 14, 19, 9, 14, 13, 18, 12, 17, 16, 21, 7, 13, 12, 18, 11, 17, 16, 22
Offset: 0

Views

Author

Gus Wiseman, Dec 20 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 29th composition in standard order is (1,1,2,1), with partial sums (1,2,4,5), with sum 12, so a(29) = 12.
		

Crossrefs

See link for sequences related to standard compositions.
Each n appears A000009(n) times.
The reverse version is A029931.
Comps counted by this statistic are A053632, ptns A264034, rev ptns A358194.
This is the sum of partial sums of rows of A066099.
The version for Heinz numbers of partitions is A318283, row sums of A358136.
Row sums of A358134.
A011782 counts compositions.
A065120 gives first part of standard compositions, last A001511.
A242628 lists adjusted partial sums, ranked by A253565, row sums A359043.
A358135 gives last minus first of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[Accumulate[stc[n]]],{n,0,100}]

A359674 Zero-based weighted sum of the prime indices of n in weakly increasing order.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 2, 3, 0, 5, 0, 4, 3, 6, 0, 6, 0, 7, 4, 5, 0, 9, 3, 6, 6, 9, 0, 8, 0, 10, 5, 7, 4, 11, 0, 8, 6, 12, 0, 10, 0, 11, 8, 9, 0, 14, 4, 9, 7, 13, 0, 12, 5, 15, 8, 10, 0, 14, 0, 11, 10, 15, 6, 12, 0, 15, 9, 11, 0, 17, 0, 12, 9, 17, 5, 14, 0, 18
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The prime indices of 12 are {1,1,2}, so a(12) = 0*1 + 1*1 + 2*2 = 5.
		

Crossrefs

Positions of last appearances (except 0) are A001248.
Positions of 0's are A008578.
The version for standard compositions is A124757, reverse A231204.
The one-based version is A304818, reverse A318283.
Positions of first appearances are A359675, reverse A359680.
First position of n is A359676(n), reverse A359681.
The reverse version is A359677, firsts A359679.
Number of appearances of positive n is A359678(n).
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    Table[wts[primeMS[n]],{n,100}]

A261079 Sum of index differences between prime factors of n, summed over all unordered pairs of primes present (with multiplicity) in the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 3, 1, 0, 0, 2, 0, 4, 2, 4, 0, 3, 0, 5, 0, 6, 0, 4, 0, 0, 3, 6, 1, 4, 0, 7, 4, 6, 0, 6, 0, 8, 2, 8, 0, 4, 0, 4, 5, 10, 0, 3, 2, 9, 6, 9, 0, 7, 0, 10, 4, 0, 3, 8, 0, 12, 7, 6, 0, 6, 0, 11, 2, 14, 1, 10, 0, 8, 0, 12, 0, 10, 4, 13, 8, 12, 0, 6, 2, 16, 9, 14, 5, 5, 0, 6, 6, 8, 0, 12, 0, 15, 4, 15, 0, 6, 0, 8, 10, 12, 0, 14, 6, 18, 8, 16, 3, 10
Offset: 1

Views

Author

Antti Karttunen, Sep 23 2015

Keywords

Examples

			For n = 1 the prime factorization is empty, thus there is nothing to sum, so a(1) = 0.
For n = 6 = 2*3 = prime(1) * prime(2), a(6) = 1 because the (absolute value of) difference between prime indices of 2 and 3 is 1.
For n = 10 = 2*5 = prime(1) * prime(3), a(10) = 2 because the difference between prime indices of 2 and 5 is 2.
For n = 12 = 2*2*3 = prime(1) * prime(1) * prime(2), a(12) = 2 because the difference between prime indices of 2 and 3 is 1, and the pair (2,3) occurs twice as one can pick either one of the two 2's present in the prime factorization to be a pair of a single 3. Note that the index difference between 2 and 2 is 0, thus the pair (2,2) of prime divisors does not contribute to the sum.
For n = 36 = 2*2*3*3, a(36) = 4 because the index difference between 2 and 3 is 1, and the prime factor pair (2,3) occurs 2^2 = four times in total. As the index difference is zero between 2 and 2 as well as between 3 and 3, the pairs (2,2) and (3,3) do not contribute to the sum.
		

Crossrefs

Cf. A000720.
Cf. A000961 (positions of zeros), A006094 (positions of ones).
Cf. also A260737.
A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, length A001222, sum A056239.
A304818 adds up partial sums of reversed prime indices, row sums of A359361.
A318283 adds up partial sums of prime indices, row sums of A358136.

Programs

  • Mathematica
    Table[Function[p, Total@ Map[Function[b, Times @@ {First@ Differences@ PrimePi@ b, Count[Subsets[p, {2}], c_ /; SameQ[c, b]]}], Subsets[Union@ p, {2}]]][Flatten@ Replace[FactorInteger@ n, {p_, e_} :> ConstantArray[p, e], 2]], {n, 120}] (* Michael De Vlieger, Mar 08 2017 *)

Formula

a(n) = A304818(n) - A318283(n). - Gus Wiseman, Jan 09 2023
a(n) = 2*A304818(n) - A359362(n). - Gus Wiseman, Jan 09 2023
Previous Showing 11-20 of 60 results. Next