A322260
Numbers k such that the poset of multiset partitions of a multiset whose multiplicities are the prime indices of k is a lattice.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 32
Offset: 1
- R. P Stanley, Enumerative Combinatorics Vol. 1, Sec. 3.3.
A321279
Number of z-trees with product A181821(n). Number of connected antichains of multisets with multiset density -1, of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
0, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 4, 4, 3, 4, 6, 4, 6, 2, 1, 4, 6, 4, 9, 6, 5, 3, 9, 2, 8, 4, 9, 8, 7, 4, 8, 4, 12, 6, 12, 5, 16, 8, 17, 5, 7, 2, 19, 6, 10, 10, 1, 6, 13, 2, 16, 7, 16, 6, 27, 4, 7, 16, 20, 8, 15, 4, 22
Offset: 1
The sequence of antichains begins:
2: {{1}}
3: {{1,1}}
3: {{1},{1}}
4: {{1,2}}
5: {{1,1,1}}
5: {{1},{1},{1}}
6: {{1,1,2}}
7: {{1,1,1,1}}
7: {{1,1},{1,1}}
7: {{1},{1},{1},{1}}
8: {{1,2,3}}
9: {{1,1,2,2}}
10: {{1,1,1,2}}
10: {{1,1},{1,2}}
11: {{1,1,1,1,1}}
11: {{1},{1},{1},{1},{1}}
12: {{1,1,2,3}}
12: {{1,2},{1,3}}
13: {{1,1,1,1,1,1}}
13: {{1,1,1},{1,1,1}}
13: {{1,1},{1,1},{1,1}}
13: {{1},{1},{1},{1},{1},{1}}
14: {{1,1,1,1,2}}
14: {{1,2},{1,1,1}}
15: {{1,1,1,2,2}}
15: {{1,1},{1,2,2}}
16: {{1,2,3,4}}
Cf.
A001055,
A007718,
A030019,
A181821,
A293607,
A303837,
A304382,
A305081,
A305936,
A318284,
A321229,
A321270,
A321271,
A321272.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Table[Length[Select[facs[Times@@Prime/@nrmptn[n]],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]
A321745
Sum of coefficients of monomial symmetric functions in the homogeneous symmetric function of the integer partition with Heinz number n.
Original entry on oeis.org
1, 1, 2, 3, 3, 6, 5, 10, 16, 12, 7, 27, 11, 20, 32, 47, 15, 76, 22, 56, 65, 35, 30, 136, 79, 54, 263, 114, 42, 191, 56, 246, 113, 86, 160, 476, 77, 128, 199, 344
Offset: 1
The sum of coefficients of h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111) is a(12) = 27.
The a(3) = 2 through a(9) = 16 size-preserving permutations of multiset partitions:
{11} {12} {111} {112} {1111} {123} {1122}
{1}{1} {1}{2} {1}{11} {1}{12} {1}{111} {1}{23} {1}{122}
{2}{1} {1}{1}{1} {2}{11} {11}{11} {2}{13} {11}{22}
{1}{1}{2} {1}{1}{11} {3}{12} {12}{12}
{1}{2}{1} {1}{1}{1}{1} {1}{2}{3} {2}{112}
{2}{1}{1} {1}{3}{2} {22}{11}
{2}{1}{3} {1}{1}{22}
{2}{3}{1} {1}{2}{12}
{3}{1}{2} {2}{1}{12}
{3}{2}{1} {2}{2}{11}
{1}{1}{2}{2}
{1}{2}{1}{2}
{1}{2}{2}{1}
{2}{1}{1}{2}
{2}{1}{2}{1}
{2}{2}{1}{1}
Cf.
A005651,
A007716,
A008480,
A056239,
A124794,
A124795,
A181821,
A255906,
A296150,
A318284,
A319193,
A319225,
A319226,
A321742-
A321765.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,mps[nrmptn[n]]}],{n,30}]
A321913
Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in h(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 6, 1, 1, 1, 1, 1, 1, 3, 2, 4, 6, 1, 2, 2, 3, 4, 1, 4, 3, 7, 12, 1, 6, 4, 12, 24, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 1, 2, 3, 5, 4, 7, 10, 1, 3, 5, 11, 8, 18, 30, 1, 3, 4, 8, 7, 13, 20, 1, 4, 7, 18, 13, 33, 60, 1, 5
Offset: 1
Tetrangle begins:
(1): 1
.
(2): 1 1
(11): 1 2
.
(3): 1 1 1
(21): 1 2 3
(111): 1 3 6
.
(4): 1 1 1 1 1
(22): 1 3 2 4 6
(31): 1 2 2 3 4
(211): 1 4 3 7 12
(1111): 1 6 4 12 24
.
(5): 1 1 1 1 1 1 1
(41): 1 2 2 3 3 4 5
(32): 1 2 3 5 4 7 10
(221): 1 3 5 11 8 18 30
(311): 1 3 4 8 7 13 20
(2111): 1 4 7 18 13 33 60
(11111): 1 5 10 30 20 60 20
For example, row 14 gives: h(32) = m(5) + 3m(32) + 2m(41) + 5m(221) + 4m(311) + 7m(2111) + 10m(11111).
This is a regrouping of the triangle
A321744.
A321917
Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in p(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions.
Original entry on oeis.org
1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 3, 6, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 2, 2, 0, 1, 6, 4, 12, 24, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 1, 2, 1, 0, 2, 0, 0, 1, 3, 4, 6, 6, 6, 0, 1, 5, 10, 30
Offset: 1
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): 1
(11): 1 2
.
(3): 1
(21): 1 1
(111): 1 3 6
.
(4): 1
(22): 1 2
(31): 1 1
(211): 1 2 2 2
(1111): 1 6 4 12 24
.
(5): 1
(41): 1 1
(32): 1 1
(221): 1 1 2 2
(311): 1 2 1 2
(2111): 1 3 4 6 6 6
(11111): 1 5 10 30 20 60 20
For example, row 14 gives: p(32) = m(5) + m(32).
This is a regrouping of the triangle
A321750.
A321934
Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in F(u), where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and F is augmented forgotten symmetric functions.
Original entry on oeis.org
1, -1, 0, 1, 1, 1, 0, 0, -1, -1, 0, 2, 3, 1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, -2, -1, -2, -1, 0, 6, 3, 8, 6, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 2, 1, 0, 1, 0, 0, -6, -6, -5, -3, -3, -1, 0
Offset: 1
Tetrangle begins (zeros not shown):
(1): 1
.
(2): -1
(11): 1 1
.
(3): 1
(21): -1 -1
(111): 2 3 1
.
(4): -1
(22): 1 1
(31): 1 1
(211): -2 -1 -2 -1
(1111): 6 3 8 6 1
.
(5): 1
(41): -1 -1
(32): -1 -1
(221): 2 1 2 1
(311): 2 2 1 1
(2111): -6 -6 -5 -3 -3 -1
(11111): 24 30 20 15 20 10 1
For example, row 14 gives: F(32) = -p(5) - p(32).
A324325
Number of non-crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 14, 15, 26, 22, 21, 29, 19, 30, 33, 31, 30, 66, 38, 42, 52, 56, 42, 47, 45, 57, 82, 77, 67, 77, 67, 101, 98, 135, 64, 137, 97, 176, 104, 109, 109, 118, 105, 231, 213, 97, 127, 181, 139, 297, 173, 385, 195, 269
Offset: 1
The a(16) = 14 non-crossing multiset partitions of the multiset {1,2,3,4}:
{{1,2,3,4}}
{{1},{2,3,4}}
{{2},{1,3,4}}
{{3},{1,2,4}}
{{4},{1,2,3}}
{{1,2},{3,4}}
{{1,4},{2,3}}
{{1},{2},{3,4}}
{{1},{3},{2,4}}
{{1},{4},{2,3}}
{{2},{3},{1,4}}
{{2},{4},{1,3}}
{{3},{1,2},{4}}
{{1},{2},{3},{4}}
Missing from this list is {{1,3},{2,4}}.
Cf.
A000108,
A001055,
A001970,
A016098,
A054726,
A099947,
A181821,
A305936,
A306438,
A318284,
A318285.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
A321915
Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
Original entry on oeis.org
1, 2, -1, -1, 1, 3, -3, 1, -3, 5, -2, 1, -2, 1, 4, -2, -4, 4, -1, -2, 3, 2, -4, 1, -4, 2, 7, -7, 2, 4, -4, -7, 10, -3, -1, 1, 2, -3, 1, 5, -5, -5, 5, 5, -5, 1, -5, 9, 5, -7, -9, 9, -2, -5, 5, 11, -11, -8, 10, -2, 5, -7, -11, 14, 10, -14, 3, 5, -9, -8, 10, 12
Offset: 1
Tetrangle begins:
(1): 1
.
(2): 2 -1
(11): -1 1
.
(3): 3 -3 1
(21): -3 5 -2
(111): 1 -2 1
.
(4): 4 -2 -4 4 -1
(22): -2 3 2 -4 1
(31): -4 2 7 -7 2
(211): 4 -4 -7 10 -3
(1111): -1 1 2 -3 1
.
(5): 5 -5 -5 5 5 -5 1
(41): -5 9 5 -7 -9 9 -2
(32): -5 5 11 11 -8 10 -2
(221): 5 -7 11 14 10 14 3
(311): 5 -9 -8 10 12 13 3
(2111): -5 9 10 14 13 17 -4
(11111): 1 -2 -2 3 3 -4 1
For example, row 14 gives: m(32) = -5h(5) + 11h(32) + 5h(41) - 11h(221) - 8h(311) + 10h(2111) - 2h(11111).
A321916
Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in h(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and h is homogeneous symmetric functions.
Original entry on oeis.org
1, -1, 1, 0, 1, 1, -2, 1, 0, -1, 1, 0, 0, 1, -1, 1, 2, -3, 1, 0, 1, 0, -2, 1, 0, 0, 1, -2, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 1, -2, -2, 3, 3, -4, 1, 0, -1, 0, 1, 2, -3, 1, 0, 0, -1, 2, 1, -3, 1, 0, 0, 0, 1, 0, -2, 1, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, -1, 1
Offset: 1
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): -1 1
(11): 1
.
(3): 1 -2 1
(21): -1 1
(111): 1
.
(4): -1 1 2 -3 1
(22): 1 -2 1
(31): 1 -2 1
(211): -1 1
(1111): 1
.
(5): 1 -2 -2 3 3 -4 1
(41): -1 1 2 -3 1
(32): -1 2 1 -3 1
(221): 1 -2 1
(311): 1 -2 1
(2111): -1 1
(11111): 1
For example, row 14 gives: h(32) = -e(32) + 2e(221) + e(311) - 3e(2111) + e(11111).
Cf.
A005651,
A008480,
A056239,
A124794,
A124795,
A215366,
A318284,
A318360,
A319191,
A319193,
A321912-
A321935.
A321919
Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in p(u), where u and v are integer partitions of n, H is Heinz number, h is homogeneous symmetric functions, and p is power sum symmetric functions.
Original entry on oeis.org
1, 2, -1, 0, 1, 3, -3, 1, 0, 2, -1, 0, 0, 1, 4, -2, -4, 4, -1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 1, 5, -5, -5, 5, 5, -5, 1, 0, 4, 0, -2, -4, 4, -1, 0, 0, 6, -6, -3, 5, -1, 0, 0, 0, 4, 0, -4, 1, 0, 0, 0, 0, 3, -3, 1, 0, 0, 0, 0, 0, 2
Offset: 1
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): 2 -1
(11): 1
.
(3): 3 -3 1
(21): 2 -1
(111): 1
.
(4): 4 -2 -4 4 -1
(22): 4 -4 1
(31): 3 -3 1
(211): 2 -1
(1111): 1
.
(5): 5 -5 -5 5 5 -5 1
(41): 4 -2 -4 4 -1
(32): 6 -6 -3 5 -1
(221): 4 -4 1
(311): 3 -3 1
(2111): 2 -1
(11111): 1
For example, row 14 gives: p(32) = 6h(32) - 6h(221) - 3h(311) + 5h(2111) - h(11111).
This is a regrouping of the triangle
A321754.
Cf.
A005651,
A008480,
A056239,
A124794,
A124795,
A215366,
A318284,
A318360,
A319191,
A319193,
A321912-
A321935.
Comments