cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A320351 Number of connected multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 11, 18, 38, 66, 130, 237, 449, 823, 1538
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Examples

			The a(1) = 1 through a(5) = 18 multiset partitions:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,2}}        {{1,3}}            {{1,4}}
         {{1},{1}}  {{1,1,1}}      {{2,2}}            {{2,3}}
                    {{1},{1,1}}    {{1,1,2}}          {{1,1,3}}
                    {{1},{1},{1}}  {{2},{2}}          {{1,2,2}}
                                   {{1,1,1,1}}        {{1,1,1,2}}
                                   {{1},{1,2}}        {{1},{1,3}}
                                   {{1},{1,1,1}}      {{2},{1,2}}
                                   {{1,1},{1,1}}      {{1,1,1,1,1}}
                                   {{1},{1},{1,1}}    {{1},{1,1,2}}
                                   {{1},{1},{1},{1}}  {{1,1},{1,2}}
                                                      {{1},{1,1,1,1}}
                                                      {{1,1},{1,1,1}}
                                                      {{1},{1},{1,2}}
                                                      {{1},{1},{1,1,1}}
                                                      {{1},{1,1},{1,1}}
                                                      {{1},{1},{1},{1,1}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],Length[csm[#]]==1&]],{n,8}]

A320799 Number of non-isomorphic (not necessarily strict) antichains of multisets of weight n with no singletons or leaves (vertices that appear only once).

Original entry on oeis.org

1, 0, 1, 1, 5, 4, 22, 27, 107, 212, 689
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 27 multiset partitions:
  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}      {{1111111}}
                   {{1122}}    {{11222}}    {{111222}}      {{1112222}}
                   {{11}{11}}  {{11}{122}}  {{112222}}      {{1122222}}
                   {{11}{22}}  {{11}{222}}  {{112233}}      {{1122333}}
                   {{12}{12}}               {{111}{111}}    {{111}{1222}}
                                            {{11}{1222}}    {{11}{12222}}
                                            {{111}{222}}    {{111}{2222}}
                                            {{112}{122}}    {{11}{12233}}
                                            {{11}{2222}}    {{111}{2233}}
                                            {{112}{222}}    {{112}{1222}}
                                            {{11}{2233}}    {{11}{22222}}
                                            {{112}{233}}    {{112}{2222}}
                                            {{122}{122}}    {{11}{22333}}
                                            {{123}{123}}    {{112}{2333}}
                                            {{11}{11}{11}}  {{113}{2233}}
                                            {{11}{12}{22}}  {{122}{1233}}
                                            {{11}{22}{22}}  {{222}{1122}}
                                            {{11}{22}{33}}  {{11}{11}{122}}
                                            {{11}{23}{23}}  {{11}{11}{222}}
                                            {{12}{12}{12}}  {{11}{12}{222}}
                                            {{12}{12}{22}}  {{11}{12}{233}}
                                            {{12}{13}{23}}  {{11}{22}{233}}
                                                            {{11}{22}{333}}
                                                            {{12}{12}{222}}
                                                            {{12}{12}{233}}
                                                            {{12}{12}{333}}
                                                            {{12}{13}{233}}
		

Crossrefs

A322133 Regular triangle read by rows where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with k vertices.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 8, 3, 1, 0, 7, 17, 12, 3, 1, 0, 11, 46, 45, 18, 4, 1, 0, 15, 94, 141, 76, 23, 4, 1, 0, 22, 212, 432, 333, 124, 30, 5, 1, 0, 30, 416, 1231, 1254, 622, 178, 37, 5, 1, 0, 42, 848, 3346, 4601, 2914, 1058, 252, 45, 6, 1
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Triangle begins:
    1
    0    1
    0    2    1
    0    3    2    1
    0    5    8    3    1
    0    7   17   12    3    1
    0   11   46   45   18    4    1
    0   15   94  141   76   23    4    1
    0   22  212  432  333  124   30    5    1
    0   30  416 1231 1254  622  178   37    5    1
    0   42  848 3346 4601 2914 1058  252   45    6    1
Non-isomorphic representatives of the multiset partitions counted in row 4:
  {{1,1,1,1}}        {{1,1,2,2}}      {{1,2,3,3}}    {{1,2,3,4}}
  {{1},{1,1,1}}      {{1,2,2,2}}      {{1,3},{2,3}}
  {{1,1},{1,1}}      {{1},{1,2,2}}    {{3},{1,2,3}}
  {{1},{1},{1,1}}    {{1,2},{1,2}}
  {{1},{1},{1},{1}}  {{1,2},{2,2}}
                     {{2},{1,2,2}}
                     {{1},{2},{1,2}}
                     {{2},{2},{1,2}}
		

Crossrefs

Programs

  • PARI
    \\ Needs G(m,n) defined in A317533 (faster PARI).
    InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
    T(n)={[Vecrev(p) | p <- Vec(1 + InvEulerMTS(y^n*G(n,n) + sum(k=0, n-1, y^k*(1 - y)*G(k,n))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 15 2024

A319496 Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.

Original entry on oeis.org

2, 3, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 151, 223, 247, 251, 281, 299, 311, 359, 377, 427, 463, 503, 593, 611, 659, 689, 703, 719, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1291, 1321, 1339, 1363, 1511, 1619, 1703, 1733, 1739, 1757, 1769
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of connected strict antichains of multisets spanning an initial interval of positive integers.

Examples

			The sequence of multisystems whose MM-numbers belong to the sequence begins:
    2: {{}}
    3: {{1}}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  151: {{1,1,2,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]

A322113 Number of non-isomorphic self-dual connected antichains of multisets of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 10, 18, 30
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. A multiset partition is self-dual if it is isomorphic to its dual. For example, {{1,1},{1,2,2},{2,3,3}} is self-dual, as it is isomorphic to its dual {{1,1,2},{2,2,3},{3,3}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(9) = 18 antichains:
  {{1}}  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}
                          {{12}{12}}  {{11}{122}}  {{112}{122}}
                                                   {{12}{13}{23}}
.
  {{1111111}}      {{11111111}}        {{111111111}}
  {{111}{1222}}    {{111}{11222}}      {{1111}{12222}}
  {{112}{1222}}    {{1112}{1222}}      {{1112}{11222}}
  {{11}{12}{233}}  {{112}{12222}}      {{1112}{12222}}
  {{12}{13}{233}}  {{1122}{1122}}      {{112}{122222}}
                   {{11}{122}{233}}    {{11}{11}{12233}}
                   {{12}{13}{2333}}    {{11}{122}{1233}}
                   {{13}{112}{233}}    {{112}{123}{233}}
                   {{13}{122}{233}}    {{113}{122}{233}}
                   {{12}{13}{24}{34}}  {{12}{111}{2333}}
                                       {{12}{13}{23333}}
                                       {{12}{133}{2233}}
                                       {{123}{123}{123}}
                                       {{13}{112}{2333}}
                                       {{22}{113}{2333}}
                                       {{12}{13}{14}{234}}
                                       {{12}{13}{22}{344}}
                                       {{12}{13}{24}{344}}
		

Crossrefs

A322138 Number of non-isomorphic weight-n blobs (2-connected weak antichains) of multisets with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 7, 7, 20, 26, 78, 184, 553
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(7) = 26 blobs:
  {{11}}  {{111}}  {{1111}}    {{11111}}  {{111111}}      {{1111111}}
  {{12}}  {{122}}  {{1122}}    {{11222}}  {{111222}}      {{1112222}}
          {{123}}  {{1222}}    {{12222}}  {{112222}}      {{1122222}}
                   {{1233}}    {{12233}}  {{112233}}      {{1122333}}
                   {{1234}}    {{12333}}  {{122222}}      {{1222222}}
                   {{11}{11}}  {{12344}}  {{122333}}      {{1222333}}
                   {{12}{12}}  {{12345}}  {{123333}}      {{1223333}}
                                          {{123344}}      {{1223344}}
                                          {{123444}}      {{1233333}}
                                          {{123455}}      {{1233444}}
                                          {{123456}}      {{1234444}}
                                          {{111}{111}}    {{1234455}}
                                          {{112}{122}}    {{1234555}}
                                          {{122}{122}}    {{1234566}}
                                          {{123}{123}}    {{1234567}}
                                          {{123}{233}}    {{112}{1222}}
                                          {{134}{234}}    {{122}{1233}}
                                          {{11}{11}{11}}  {{123}{2233}}
                                          {{12}{12}{12}}  {{123}{2333}}
                                          {{12}{13}{23}}  {{123}{2344}}
                                                          {{134}{2344}}
                                                          {{145}{2345}}
                                                          {{223}{1233}}
                                                          {{344}{1234}}
                                                          {{12}{13}{233}}
                                                          {{13}{14}{234}}
		

Crossrefs

A318403 Number of strict connected antichains of sets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 13, 22, 31
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2018

Keywords

Examples

			The a(1) = 1 through a(10) = 13 clutters:
  {{1}}  {{2}}  {{3}}    {{4}}    {{5}}    {{6}}      {{7}}
                {{1,2}}  {{1,3}}  {{1,4}}  {{1,5}}    {{1,6}}
                                  {{2,3}}  {{2,4}}    {{2,5}}
                                           {{1,2,3}}  {{3,4}}
                                                      {{1,2,4}}
                                                      {{1,2},{1,3}}
.
  {{8}}          {{9}}          {{10}}
  {{1,7}}        {{1,8}}        {{1,9}}
  {{2,6}}        {{2,7}}        {{2,8}}
  {{3,5}}        {{3,6}}        {{3,7}}
  {{1,2,5}}      {{4,5}}        {{4,6}}
  {{1,3,4}}      {{1,2,6}}      {{1,2,7}}
  {{1,2},{1,4}}  {{1,3,5}}      {{1,3,6}}
  {{1,2},{2,3}}  {{2,3,4}}      {{1,4,5}}
                 {{1,2},{1,5}}  {{2,3,5}}
                 {{1,2},{2,4}}  {{1,2,3,4}}
                 {{1,3},{1,4}}  {{1,2},{1,6}}
                 {{1,3},{2,3}}  {{1,2},{2,5}}
                                {{1,3},{1,5}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,8}]

A319079 Number of connected antichains of sets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 7, 12, 15, 19, 26, 43
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2018

Keywords

Examples

			The a(10) = 19 clutters:
  {{10}}
  {{1,9}}
  {{2,8}}
  {{3,7}}
  {{4,6}}
  {{1,2,7}}
  {{1,3,6}}
  {{1,4,5}}
  {{2,3,5}}
  {{1,2,3,4}}
  {{5},{5}}
  {{1,2},{1,6}}
  {{1,2},{2,5}}
  {{1,3},{1,5}}
  {{1,4},{1,4}}
  {{2,3},{2,3}}
  {{1,2},{1,2},{1,3}}
  {{2},{2},{2},{2},{2}}
  {{1},{1},{1},{1},{1},{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[And@@UnsameQ@@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,10}]

A321680 Number of non-isomorphic weight-n connected antichains (not necessarily strict) of multisets with multiset density -1.

Original entry on oeis.org

1, 1, 3, 4, 9, 14, 39, 80, 216, 538, 1460
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset trees:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
                    {{1},{1},{1}}  {{1,2,3,3}}        {{1,2,2,3,3}}
                                   {{1,2,3,4}}        {{1,2,3,3,3}}
                                   {{1,1},{1,1}}      {{1,2,3,4,4}}
                                   {{1,2},{2,2}}      {{1,2,3,4,5}}
                                   {{1,3},{2,3}}      {{1,1},{1,2,2}}
                                   {{1},{1},{1},{1}}  {{1,2},{2,2,2}}
                                                      {{1,2},{2,3,3}}
                                                      {{1,3},{2,3,3}}
                                                      {{1,4},{2,3,4}}
                                                      {{3,3},{1,2,3}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

A321681 Number of non-isomorphic weight-n connected strict antichains of multisets with multiset density -1.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 35, 77, 205, 517, 1399
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 13 trees:
  {{1}}  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
         {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
                  {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                             {{1,2,3,3}}    {{1,2,2,3,3}}
                             {{1,2,3,4}}    {{1,2,3,3,3}}
                             {{1,2},{2,2}}  {{1,2,3,4,4}}
                             {{1,3},{2,3}}  {{1,2,3,4,5}}
                                            {{1,1},{1,2,2}}
                                            {{1,2},{2,2,2}}
                                            {{1,2},{2,3,3}}
                                            {{1,3},{2,3,3}}
                                            {{1,4},{2,3,4}}
                                            {{3,3},{1,2,3}}
		

Crossrefs

Previous Showing 11-20 of 25 results. Next