A364467
Number of integer partitions of n where some part is the difference of two consecutive parts.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 5, 9, 13, 21, 28, 42, 55, 78, 106, 144, 187, 255, 325, 429, 554, 717, 906, 1165, 1460, 1853, 2308, 2899, 3582, 4468, 5489, 6779, 8291, 10173, 12363, 15079, 18247, 22124, 26645, 32147, 38555, 46285, 55310, 66093, 78684, 93674, 111104
Offset: 0
The a(3) = 1 through a(9) = 13 partitions:
(21) (211) (221) (42) (421) (422) (63)
(2111) (321) (2221) (431) (621)
(2211) (3211) (521) (3321)
(21111) (22111) (3221) (4221)
(211111) (4211) (4311)
(22211) (5211)
(32111) (22221)
(221111) (32211)
(2111111) (42111)
(222111)
(321111)
(2211111)
(21111111)
For all differences of pairs parts we have
A363225, complement
A364345.
The complement is counted by
A363260.
These partitions have ranks
A364537.
A325325 counts partitions with distinct first differences.
Cf.
A002865,
A025065,
A093971,
A108917,
A196723,
A229816,
A236912,
A237113,
A237667,
A320347,
A326083.
-
Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
-
from collections import Counter
from sympy.utilities.iterables import partitions
def A364467(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023
A386581
Number of normal multisets of size n with no permutation having all distinct run lengths.
Original entry on oeis.org
0, 0, 1, 1, 5, 11, 20, 51, 108, 229, 448, 953, 1940, 3951, 7986, 15972
Offset: 0
The normal multiset m = {1,1,1,2,2,2} has permutation (1,2,2,2,1,1) with run lengths (1,3,2), so m is not counted under a(6).
The a(1) = 0 through a(6) = 20 multisets:
. (12) (123) (1122) (11123) (111123)
(1123) (11223) (111234)
(1223) (11233) (112233)
(1233) (11234) (112234)
(1234) (12223) (112334)
(12233) (112344)
(12234) (112345)
(12333) (122223)
(12334) (122234)
(12344) (122334)
(12345) (122344)
(122345)
(123333)
(123334)
(123344)
(123345)
(123444)
(123445)
(123455)
(123456)
For weakly decreasing multiplicities we appear to have
A383710, ranks
A382912.
A032020 counts normal multisets with distinct multiplicities.
A098859 counts partitions with distinct multiplicities, compositions
A242882.
Cf.
A000009,
A025065,
A047966,
A072233,
A116540,
A130091,
A320347,
A326083,
A382771,
A382913,
A383706.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
nodrm[y_]:=Select[Permutations[y],UnsameQ@@Length/@Split[#]&];
Table[Length[Select[allnorm[n],nodrm[#]=={}&]],{n,0,7}]
A364536
Number of strict integer partitions of n where some part is a difference of two consecutive parts.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 2, 1, 2, 2, 5, 4, 6, 6, 9, 11, 16, 17, 23, 25, 30, 38, 48, 55, 65, 78, 92, 106, 127, 146, 176, 205, 230, 277, 315, 366, 421, 483, 552, 640, 727, 829, 950, 1083, 1218, 1408, 1577, 1794, 2017, 2298, 2561, 2919, 3255, 3685, 4116, 4638, 5163
Offset: 0
The a(3) = 1 through a(15) = 11 partitions (A = 10, B = 11, C = 12):
21 . . 42 421 431 63 532 542 84 742 743 A5
321 521 621 541 632 642 841 752 843
631 821 651 A21 761 942
721 5321 921 5431 842 C21
4321 5421 6421 B21 6432
6321 7321 6431 6531
6521 7431
7421 7521
8321 8421
9321
54321
A325325 counts partitions with distinct first-differences, strict
A320347.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
-
from collections import Counter
from sympy.utilities.iterables import partitions
def A364536(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023
A364537
Heinz numbers of integer partitions where some part is the difference of two consecutive parts.
Original entry on oeis.org
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258
Offset: 1
The partition {3,4,5,7} with Heinz number 6545 has first differences (1,1,2) so is not in the sequence.
The terms together with their prime indices begin:
6: {1,2}
12: {1,1,2}
18: {1,2,2}
21: {2,4}
24: {1,1,1,2}
30: {1,2,3}
36: {1,1,2,2}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
65: {3,6}
66: {1,2,5}
70: {1,3,4}
72: {1,1,1,2,2}
78: {1,2,6}
84: {1,1,2,4}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
For all differences of pairs the complement is
A364347, counted by
A364345.
Subsets of {1..n} of this type are counted by
A364466, complement
A364463.
A325325 counts partitions with distinct first differences.
Cf.
A002865,
A025065,
A093971,
A108917,
A196723,
A229816,
A236912,
A237113,
A237667,
A320347,
A326083.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[prix[#],Differences[prix[#]]]!={}&]
A386580
Number of normal multisets of size n having a permutation with all distinct run lengths.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 12, 13, 20, 27, 64, 71, 108, 145, 206, 412
Offset: 0
The normal multiset m = {1,1,1,2,2,2} has permutation (1,2,2,2,1,1) with run lengths (1,3,2), so m is counted under a(6).
The a(n) multisets for n = 1..7:
(1) (11) (111) (1111) (11111) (111111) (1111111)
(112) (1112) (11112) (111112) (1111112)
(122) (1222) (11122) (111122) (1111122)
(11222) (111222) (1111222)
(12222) (111223) (1111223)
(111233) (1111233)
(112222) (1112222)
(112223) (1122222)
(112333) (1122223)
(122222) (1123333)
(122233) (1222222)
(122333) (1222233)
(1223333)
For weakly decreasing multiplicities we appear to have
A383708.
A032020 counts normal multisets with distinct multiplicities, increasing
A000009.
A098859 counts partitions with distinct multiplicities, compositions
A242882.
Cf.
A025065,
A047966,
A048767,
A072233,
A116540,
A130091,
A320347,
A326083,
A382771,
A382913,
A383706.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
nodrm[y_]:=Select[Permutations[y],UnsameQ@@Length/@Split[#]&];
Table[Length[Select[allnorm[n],nodrm[#]!={}&]],{n,0,5}]
A364673
Number of (necessarily strict) integer partitions of n containing all of their own first differences.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 5, 2, 2, 4, 2, 3, 6, 4, 4, 8, 4, 4, 10, 8, 7, 8, 13, 9, 15, 12, 13, 17, 20, 15, 31, 24, 27, 32, 33, 32, 50, 42, 45, 53, 61, 61, 85, 76, 86, 101, 108, 118, 137, 141, 147, 179, 184, 196, 222, 244, 257, 295, 324, 348, 380, 433
Offset: 0
The partition y = (12,6,3,2,1) has differences (6,3,1,1), and {1,3,6} is a subset of {1,2,3,6,12}, so y is counted under a(24).
The a(n) partitions for n = 1, 3, 6, 12, 15, 18, 21:
(1) (3) (6) (12) (15) (18) (21)
(2,1) (4,2) (8,4) (10,5) (12,6) (14,7)
(3,2,1) (6,4,2) (8,4,2,1) (9,6,3) (12,6,3)
(5,4,2,1) (5,4,3,2,1) (6,5,4,2,1) (8,6,4,2,1)
(6,3,2,1) (7,5,3,2,1) (9,5,4,2,1)
(8,4,3,2,1) (9,6,3,2,1)
(10,5,3,2,1)
(6,5,4,3,2,1)
Containing all differences:
A007862.
For submultisets instead of subsets we have
A364675.
A236912 counts sum-free partitions w/o re-used parts, complement
A237113.
A325325 counts partitions with distinct first differences.
Cf.
A002865,
A025065,
A196723,
A229816,
A237667,
A320347,
A363225,
A364272,
A364345,
A364463,
A364537,
A370386.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,-Differences[#]]&]],{n,0,30}]
-
from collections import Counter
def A364673_list(maxn):
count = Counter()
for i in range(maxn//3):
A,f,i = [[(i+1, )]],0,0
while f == 0:
A.append([])
for j in A[i]:
for k in j:
x = j + (j[-1] + k, )
y = sum(x)
if y <= maxn:
A[i+1].append(x)
count.update({y})
if len(A[i+1]) < 1: f += 1
i += 1
return [count[z]+1 for z in range(maxn+1)] # John Tyler Rascoe, Mar 09 2024
A342520
Number of strict integer partitions of n with distinct first quotients.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 10, 12, 13, 16, 20, 25, 30, 37, 42, 50, 57, 65, 80, 93, 108, 127, 147, 170, 198, 225, 258, 297, 340, 385, 448, 499, 566, 647, 737, 832, 937, 1064, 1186, 1348, 1522, 1701, 1916, 2157, 2402, 2697, 3013, 3355, 3742, 4190, 4656, 5191
Offset: 0
The strict partition (12,10,5,2,1) has first quotients (5/6,1/2,2/5,1/2) so is not counted under a(30), even though the first differences (-2,-5,-3,-1) are distinct.
The a(1) = 1 through a(13) = 16 partitions (A..D = 10..13):
1 2 3 4 5 6 7 8 9 A B C D
21 31 32 42 43 53 54 64 65 75 76
41 51 52 62 63 73 74 84 85
321 61 71 72 82 83 93 94
431 81 91 92 A2 A3
521 432 532 A1 B1 B2
531 541 542 543 C1
621 631 632 642 643
721 641 651 652
4321 731 732 742
821 741 751
5321 831 832
921 841
A21
5431
7321
The version for differences instead of quotients is
A320347.
The equal instead of distinct version is
A342515.
The non-strict ordered version is
A342529.
The version for strict divisor chains is
A342530.
A167865 counts strict chains of divisors > 1 summing to n.
A342086 counts strict chains of divisors with strictly increasing quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]
A364675
Number of integer partitions of n whose nonzero first differences are a submultiset of the parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 7, 7, 10, 12, 15, 15, 26, 25, 35, 45, 55, 60, 86, 94, 126, 150, 186, 216, 288, 328, 407, 493, 610, 699, 896, 1030, 1269, 1500, 1816, 2130, 2620, 3029, 3654, 4300, 5165, 5984, 7222, 8368, 9976, 11637, 13771, 15960, 18978, 21896, 25815, 29915
Offset: 0
The partition y = (3,2,1,1) has first differences (1,1,0), and (1,1) is a submultiset of y, so y is counted under a(7).
The a(1) = 1 through a(8) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (221) (33) (421) (44)
(111) (211) (2111) (42) (2221) (422)
(1111) (11111) (222) (3211) (2222)
(2211) (22111) (4211)
(21111) (211111) (22211)
(111111) (1111111) (32111)
(221111)
(2111111)
(11111111)
The strict case (no differences of 0) appears to be
A154402.
Starting with the distinct parts gives
A342337.
For subsets instead of submultisets we have
A364673.
A325325 counts partitions with distinct first differences.
Cf.
A002865,
A007862,
A108917,
A229816,
A237667,
A237668,
A320347,
A363225,
A364272,
A364345,
A364466.
-
submultQ[cap_,fat_] := And@@Function[i,Count[fat,i] >= Count[cap,i]] /@ Union[List@@cap];
Table[Length[Select[IntegerPartitions[n], submultQ[Differences[Union[#]],#]&]], {n,0,30}]
A364674
Number of integer partitions of n containing all of their own nonzero first differences.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 8, 7, 11, 13, 17, 18, 32, 30, 44, 54, 70, 78, 114, 125, 171, 205, 257, 302, 408, 464, 592, 711, 892, 1042, 1330, 1543, 1925, 2279, 2787, 3291, 4061, 4727, 5753, 6792, 8197, 9583, 11593, 13505, 16198, 18965, 22548, 26290, 31340, 36363, 43046
Offset: 0
The partition (10,5,3,3,2,1) has nonzero differences (5,2,1,1) so is counted under a(24).
The a(1) = 1 through a(9) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (221) (33) (421) (44) (63)
(111) (211) (2111) (42) (2221) (422) (333)
(1111) (11111) (222) (3211) (2222) (3321)
(321) (22111) (3221) (4221)
(2211) (211111) (4211) (22221)
(21111) (1111111) (22211) (32211)
(111111) (32111) (42111)
(221111) (222111)
(2111111) (321111)
(11111111) (2211111)
(21111111)
(111111111)
For subsets instead of partitions we have
A364671, complement
A364672.
The strict case (no differences of 0) is counted by
A364673.
For submultisets instead of subsets we have
A364675.
A236912 counts sum-free partitions w/o re-used parts, complement
A237113.
A325325 counts partitions with distinct first differences.
-
Table[Length[Select[IntegerPartitions[n], SubsetQ[#,Differences[Union[#]]]&]],{n,0,30}]
A364465
Number of subsets of {1..n} with all different first differences of elements.
Original entry on oeis.org
1, 2, 4, 7, 13, 22, 36, 61, 99, 156, 240, 381, 587, 894, 1334, 1967, 2951, 4370, 6406, 9293, 13357, 18976, 27346, 39013, 55437, 78154, 109632, 152415, 210801, 293502, 406664, 561693, 772463, 1058108, 1441796, 1956293, 2639215, 3579542, 4835842, 6523207
Offset: 0
The a(0) = 1 through a(4) = 13 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{1,3,4}
For all differences of pairs of elements we have
A196723
A363260 counts partitions disjoint from differences, complement
A364467.
Cf.
A000009,
A008289,
A011782,
A236912,
A320348,
A325857,
A325877,
A325878,
A326083,
A364345,
A364346.
-
Table[Length[Select[Subsets[Range[n]],UnsameQ@@Differences[#]&]],{n,0,10}]
Comments