A360357 Numbers k such that k and k+1 are both products of primes of nonprime index (A320628).
1, 7, 13, 28, 37, 46, 52, 73, 91, 97, 103, 106, 112, 148, 151, 172, 181, 193, 196, 202, 223, 226, 232, 256, 262, 292, 298, 301, 316, 337, 343, 346, 361, 376, 388, 397, 427, 448, 457, 463, 466, 478, 487, 502, 511, 523, 541, 556, 568, 592, 601, 607, 613, 622, 631
Offset: 1
Keywords
Examples
7 = prime(4) is a term since 4 is nonprime, 7 + 1 = 8 = prime(1)^3, and 1 is also nonprime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := AllTrue[FactorInteger[n][[;; , 1]], ! PrimeQ[PrimePi[#]] &]; seq = {}; q1 = q[1]; n = 2; c = 0; While[c < 55, q2 = q[n]; If[q1 && q2, c++; AppendTo[seq, n - 1]]; q1 = q2; n++]; seq
-
PARI
is(n) = {my(p = factor(n)[,1]); for(i = 1, #p, if(isprime(primepi(p[i])), return(0))); 1;} lista(nmax) = {my(q1 = is(1), q2); for(n = 2, nmax, q2 = is(n); if(q1 && q2, print1(n-1, ", ")); q1 = q2); }
Comments