A322387
Number of 2-vertex-connected integer partitions of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 6, 2, 10, 8, 13, 9, 26, 14, 35, 28, 50, 37, 77, 54, 101, 84, 138, 110, 205, 149, 252, 222, 335, 287, 455, 375, 577, 522, 740, 657, 985
Offset: 1
The a(14) = 10 2-vertex-connected integer partitions:
(14) (8,6) (6,4,4) (6,3,3,2) (6,2,2,2,2)
(10,4) (6,6,2) (6,4,2,2)
(12,2) (10,2,2)
Cf.
A013922,
A095983,
A218970,
A275307,
A304714,
A304716,
A305078,
A305079,
A322335,
A322336,
A322337,
A322338,
A322388,
A322389,
A322390.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]
A322390
Number of integer partitions of n with vertex-connectivity 1.
Original entry on oeis.org
0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 8, 1, 7, 3, 11, 1, 14, 2, 18, 7, 21, 6, 35, 14, 43, 28, 65, 42, 96, 70, 141, 120, 205, 187, 315, 286, 445, 445, 657
Offset: 1
The a(14) = 7 integer partitions are (842), (8222), (77), (4442), (44222), (422222), (2222222).
The a(18) = 14 integer partitions:
(9,9), (16,2),
(8,8,2), (10,6,2),
(8,4,4,2), (9,3,3,3),
(4,4,4,4,2), (8,4,2,2,2),
(3,3,3,3,3,3), (4,4,4,2,2,2), (8,2,2,2,2,2),
(4,4,2,2,2,2,2),
(4,2,2,2,2,2,2,2),
(2,2,2,2,2,2,2,2,2).
Cf.
A013922,
A054921,
A095983,
A304714,
A304716,
A305078,
A305079,
A322335,
A322338,
A322387,
A322389,
A322391.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[IntegerPartitions[n],vertConn[#]==1&]],{n,20}]
A327097
BII-numbers of set-systems with non-spanning edge-connectivity 2.
Original entry on oeis.org
5, 6, 17, 20, 24, 34, 36, 40, 48, 53, 54, 55, 60, 61, 62, 63, 65, 66, 68, 71, 72, 80, 86, 87, 89, 92, 93, 94, 95, 96, 101, 103, 106, 108, 109, 110, 111, 113, 114, 115, 121, 122, 123, 257, 260, 272, 308, 309, 310, 311, 316, 317, 318, 319, 320, 326, 327, 342
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity 2 together with their BII-numbers begins:
5: {{1},{1,2}}
6: {{2},{1,2}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
36: {{1,2},{2,3}}
40: {{3},{2,3}}
48: {{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
BII-numbers for vertex-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for non-spanning edge-connectivity > 1 are
A327102.
BII-numbers for spanning edge-connectivity 2 are
A327108.
Cf.
A007146,
A048793,
A052446,
A059166,
A070939,
A095983,
A263296,
A322335,
A322338,
A322395,
A326031,
A327041,
A327069,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]==2&]
A327236
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 4, 5, 10, 8, 5, 1, 1
Offset: 0
Triangle begins:
1
1
1 1
1 1 1 1
2 2 3 3 1
4 5 10 8 5 1 1
Spanning edge-connectivity is
A263296.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327201
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 3, 7, 5, 4, 1, 1
Offset: 0
Triangle begins:
1
{}
0 1
0 0 1 1
1 1 2 2 1
2 3 7 5 4 1 1
Spanning edge-connectivity is
A263296.
The non-covering version is
A327236 (partial sums).
Cf.
A000088,
A322338,
A322396,
A326787,
A327076,
A327077,
A327079,
A327126,
A327129,
A327148,
A327235.
A327149
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of simple labeled graphs covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 1, 3, 12, 15, 10, 1, 40, 180, 297, 180, 60, 10, 1
Offset: 0
Triangle begins:
1
{}
0 1
0 0 3 1
3 12 15 10 1
40 180 297 180 60 10 1
The corresponding triangle for vertex-connectivity is
A327126.
The corresponding triangle for spanning edge-connectivity is
A327069.
The non-covering version is
A327148.
Cf.
A001187,
A263296,
A322338,
A322395,
A326787,
A327097,
A327099,
A327102,
A327125,
A327129,
A327144.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A322388
Heinz numbers of 2-vertex-connected integer partitions.
Original entry on oeis.org
13, 29, 37, 39, 43, 47, 61, 65, 71, 73, 79, 87, 89, 91, 101, 107, 111, 113, 117, 129, 137, 139, 149, 151, 163, 167, 169, 173, 181, 183, 185, 193, 195, 197, 199, 203, 213, 223, 229, 233, 235, 237, 239, 247, 251, 257, 259, 261, 263, 267, 269, 271, 273, 281
Offset: 1
The sequence of all 2-vertex-connected integer partitions begins: (1), (6), (10), (12), (6,2), (14), (15), (18), (6,3), (20), (21), (22), (10,2), (24), (6,4), (26), (28), (12,2), (30), (6,2,2), (14,2), (33), (34), (35), (36), (38), (39), (6,6), (40), (42), (18,2), (12,3), (44), (6,3,2), (45), (46).
Cf.
A003963,
A013922,
A056239,
A095983,
A112798,
A218970,
A275307,
A304716,
A305078,
A305079,
A322336,
A322338,
A322387,
A322389,
A322390.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]]
Select[Range[100],vertConn[primeMS[#]]>1&]
A322396
Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.
Original entry on oeis.org
1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0
-
\\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020
A322367
Number of disconnected or empty integer partitions of n.
Original entry on oeis.org
1, 0, 1, 2, 3, 6, 7, 14, 17, 27, 34, 54, 63, 98, 118, 165, 207, 287, 345, 474, 574, 757, 931, 1212, 1463, 1890, 2292, 2898, 3515, 4413, 5303
Offset: 0
The a(3) = 2 through a(9) = 27 disconnected integer partitions:
(21) (31) (32) (51) (43) (53) (54)
(111) (211) (41) (321) (52) (71) (72)
(1111) (221) (411) (61) (332) (81)
(311) (2211) (322) (431) (432)
(2111) (3111) (331) (521) (441)
(11111) (21111) (421) (611) (522)
(111111) (511) (3221) (531)
(2221) (3311) (621)
(3211) (4211) (711)
(4111) (5111) (3222)
(22111) (22211) (3321)
(31111) (32111) (4221)
(211111) (41111) (4311)
(1111111) (221111) (5211)
(311111) (6111)
(2111111) (22221)
(11111111) (32211)
(33111)
(42111)
(51111)
(222111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
(111111111)
Cf.
A054921,
A218970,
A286518,
A322335,
A304714,
A304716,
A305078,
A305079,
A322306,
A322307,
A322337,
A322338,
A322368,
A322369.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}]
A322393
Regular triangle read by rows where T(n,k) is the number of integer partitions of n with edge-connectivity k, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 6, 1, 0, 0, 0, 0, 7, 1, 2, 1, 0, 0, 0, 14, 1, 0, 0, 0, 0, 0, 0, 17, 1, 2, 1, 1, 0, 0, 0, 0, 27, 1, 1, 1, 0, 0, 0, 0, 0, 0, 34, 1, 3, 2, 1, 1, 0, 0, 0, 0, 0, 54, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 1, 4, 4, 3, 1, 1
Offset: 0
Triangle begins:
1
0 1
1 1 0
2 1 0 0
3 1 1 0 0
6 1 0 0 0 0
7 1 2 1 0 0 0
14 1 0 0 0 0 0 0
17 1 2 1 1 0 0 0 0
27 1 1 1 0 0 0 0 0 0
34 1 3 2 1 1 0 0 0 0 0
54 2 0 0 0 0 0 0 0 0 0 0
63 1 4 4 3 1 1 0 0 0 0 0 0
Row 6 {7, 1, 2, 1} counts the following integer partitions:
(51) (6) (33) (222)
(321) (42)
(411)
(2211)
(3111)
(21111)
(111111)
Cf.
A013922,
A054921,
A095983,
A304716,
A305078,
A305079,
A322335,
A322336,
A322337,
A322338,
A322387.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]
Table[Length[Select[IntegerPartitions[n],edgeConn[#]==k&]],{n,10},{k,0,n}]
Comments