cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A322387 Number of 2-vertex-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 6, 2, 10, 8, 13, 9, 26, 14, 35, 28, 50, 37, 77, 54, 101, 84, 138, 110, 205, 149, 252, 222, 335, 287, 455, 375, 577, 522, 740, 657, 985
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

An integer partition is 2-vertex-connected if the prime factorizations of the parts form a connected hypergraph that is still connected if any single prime number is divided out of all the parts (and any parts then equal to 1 are removed).

Examples

			The a(14) = 10 2-vertex-connected integer partitions:
  (14)  (8,6)   (6,4,4)   (6,3,3,2)  (6,2,2,2,2)
        (10,4)  (6,6,2)   (6,4,2,2)
        (12,2)  (10,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]

Extensions

a(41)-a(42) from Jinyuan Wang, Jun 20 2020

A322390 Number of integer partitions of n with vertex-connectivity 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 8, 1, 7, 3, 11, 1, 14, 2, 18, 7, 21, 6, 35, 14, 43, 28, 65, 42, 96, 70, 141, 120, 205, 187, 315, 286, 445, 445, 657
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The a(14) = 7 integer partitions are (842), (8222), (77), (4442), (44222), (422222), (2222222).
The a(18) = 14 integer partitions:
  (9,9), (16,2),
  (8,8,2), (10,6,2),
  (8,4,4,2), (9,3,3,3),
  (4,4,4,4,2), (8,4,2,2,2),
  (3,3,3,3,3,3), (4,4,4,2,2,2), (8,2,2,2,2,2),
  (4,4,2,2,2,2,2),
  (4,2,2,2,2,2,2,2),
  (2,2,2,2,2,2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[IntegerPartitions[n],vertConn[#]==1&]],{n,20}]

A327097 BII-numbers of set-systems with non-spanning edge-connectivity 2.

Original entry on oeis.org

5, 6, 17, 20, 24, 34, 36, 40, 48, 53, 54, 55, 60, 61, 62, 63, 65, 66, 68, 71, 72, 80, 86, 87, 89, 92, 93, 94, 95, 96, 101, 103, 106, 108, 109, 110, 111, 113, 114, 115, 121, 122, 123, 257, 260, 272, 308, 309, 310, 311, 316, 317, 318, 319, 320, 326, 327, 342
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any isolated vertices) to result in a disconnected or empty set-system.

Examples

			The sequence of all set-systems with non-spanning edge-connectivity 2 together with their BII-numbers begins:
   5: {{1},{1,2}}
   6: {{2},{1,2}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  24: {{3},{1,3}}
  34: {{2},{2,3}}
  36: {{1,2},{2,3}}
  40: {{3},{2,3}}
  48: {{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
		

Crossrefs

Positions of 2's in A326787.
BII-numbers for vertex-connectivity 2 are A327082.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for non-spanning edge-connectivity > 1 are A327102.
BII-numbers for spanning edge-connectivity 2 are A327108.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
    Select[Range[0,100],edgeConn[bpe[#]]==2&]

A327236 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 4, 5, 10, 8, 5, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 03 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices.

Examples

			Triangle begins:
  1
  1
  1  1
  1  1  1  1
  2  2  3  3  1
  4  5 10  8  5  1  1
		

Crossrefs

Row sums are A000088.
Column k = 0 is A327235.
The labeled version is A327148.
The covering version is A327201.
Spanning edge-connectivity is A263296.
Vertex-connectivity is A259862.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}

A327201 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs covering n vertices with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 3, 7, 5, 4, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 03 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices.

Examples

			Triangle begins:
  1
  {}
  0 1
  0 0 1 1
  1 1 2 2 1
  2 3 7 5 4 1 1
		

Crossrefs

Row sums are A002494.
Column k = 0 is A327075.
The labeled version is A327149.
Spanning edge-connectivity is A263296.
The non-covering version is A327236 (partial sums).

A327149 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of simple labeled graphs covering n vertices with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 3, 12, 15, 10, 1, 40, 180, 297, 180, 60, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty graph.

Examples

			Triangle begins:
   1
   {}
   0   1
   0   0   3   1
   3  12  15  10   1
  40 180 297 180  60  10   1
		

Crossrefs

Row sums are A006129.
Column k = 0 is A327070.
Column k = 1 is A327079.
The corresponding triangle for vertex-connectivity is A327126.
The corresponding triangle for spanning edge-connectivity is A327069.
The non-covering version is A327148.
The unlabeled version is A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}

Formula

A327148(n,k) = Sum_{m = 0..n} binomial(n,m) T(m,k). In words, column k is the inverse binomial transform of column k of A327148.

A322388 Heinz numbers of 2-vertex-connected integer partitions.

Original entry on oeis.org

13, 29, 37, 39, 43, 47, 61, 65, 71, 73, 79, 87, 89, 91, 101, 107, 111, 113, 117, 129, 137, 139, 149, 151, 163, 167, 169, 173, 181, 183, 185, 193, 195, 197, 199, 203, 213, 223, 229, 233, 235, 237, 239, 247, 251, 257, 259, 261, 263, 267, 269, 271, 273, 281
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is 2-vertex-connected if the prime factorizations of the parts form a connected hypergraph that is still connected if any single prime number is divided out of all the parts (and any parts then equal to 1 are removed).

Examples

			The sequence of all 2-vertex-connected integer partitions begins: (1), (6), (10), (12), (6,2), (14), (15), (18), (6,3), (20), (21), (22), (10,2), (24), (6,4), (26), (28), (12,2), (30), (6,2,2), (14,2), (33), (34), (35), (36), (38), (39), (6,6), (40), (42), (18,2), (12,3), (44), (6,3,2), (45), (46).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]]
    Select[Range[100],vertConn[primeMS[#]]>1&]

A322396 Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Extensions

a(6)-a(10) from Andrew Howroyd, Dec 08 2018
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2020

A322367 Number of disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 7, 14, 17, 27, 34, 54, 63, 98, 118, 165, 207, 287, 345, 474, 574, 757, 931, 1212, 1463, 1890, 2292, 2898, 3515, 4413, 5303
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 2 through a(9) = 27 disconnected integer partitions:
  (21)   (31)    (32)     (51)      (43)       (53)        (54)
  (111)  (211)   (41)     (321)     (52)       (71)        (72)
         (1111)  (221)    (411)     (61)       (332)       (81)
                 (311)    (2211)    (322)      (431)       (432)
                 (2111)   (3111)    (331)      (521)       (441)
                 (11111)  (21111)   (421)      (611)       (522)
                          (111111)  (511)      (3221)      (531)
                                    (2221)     (3311)      (621)
                                    (3211)     (4211)      (711)
                                    (4111)     (5111)      (3222)
                                    (22111)    (22211)     (3321)
                                    (31111)    (32111)     (4221)
                                    (211111)   (41111)     (4311)
                                    (1111111)  (221111)    (5211)
                                               (311111)    (6111)
                                               (2111111)   (22221)
                                               (11111111)  (32211)
                                                           (33111)
                                                           (42111)
                                                           (51111)
                                                           (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}]

A322393 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with edge-connectivity k, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 6, 1, 0, 0, 0, 0, 7, 1, 2, 1, 0, 0, 0, 14, 1, 0, 0, 0, 0, 0, 0, 17, 1, 2, 1, 1, 0, 0, 0, 0, 27, 1, 1, 1, 0, 0, 0, 0, 0, 0, 34, 1, 3, 2, 1, 1, 0, 0, 0, 0, 0, 54, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 1, 4, 4, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

The edge connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			Triangle begins:
   1
   0  1
   1  1  0
   2  1  0  0
   3  1  1  0  0
   6  1  0  0  0  0
   7  1  2  1  0  0  0
  14  1  0  0  0  0  0  0
  17  1  2  1  1  0  0  0  0
  27  1  1  1  0  0  0  0  0  0
  34  1  3  2  1  1  0  0  0  0  0
  54  2  0  0  0  0  0  0  0  0  0  0
  63  1  4  4  3  1  1  0  0  0  0  0  0
Row 6 {7, 1, 2, 1} counts the following integer partitions:
  (51)      (6)  (33)  (222)
  (321)          (42)
  (411)
  (2211)
  (3111)
  (21111)
  (111111)
		

Crossrefs

Row sums are A000041. First column is A322367. Second column is A322391.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]
    Table[Length[Select[IntegerPartitions[n],edgeConn[#]==k&]],{n,10},{k,0,n}]
Previous Showing 11-20 of 22 results. Next