cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 92 results. Next

A323022 Fourth omega of n. Number of distinct multiplicities in the prime signature of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

The indices of terms greater than 1 are {60, 84, 90, 120, 126, 132, 140, 150, ...}.
First term greater than 2 is a(1801800) = 3. In general, the first appearance of k is a(A182856(k)) = k.
The prime signature of n (row n of A118914) is the multiset of prime multiplicities in n.
We define the k-th omega of n to be Omega(red^{k-1}(n)) where Omega = A001222 and red^{k} is the k-th functional iteration of A181819. The first three omegas are A001222, A001221, A071625, and this sequence is the fourth. The zeroth omega is not uniquely determined from prime signature, but one possible choice is A056239 (sum of prime indices).

Examples

			The prime signature of 1286485200 is {1, 1, 1, 2, 2, 3, 4}, in which 1 appears three times, two appears twice, and 3 and 4 both appear once, so there are 3 distinct multiplicities {1, 2, 3} and hence a(1286485200) = 3.
		

Crossrefs

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[PrimeNu[red[red[n]]],{n,200}]
  • PARI
    a(n) = my(e=factor(n)[, 2], s = Set(e), m=Map(), v=vector(#s)); for(i=1, #s, mapput(m,s[i],i)); for(i=1, #e, v[mapget(m,e[i])]++); #Set(v) \\ David A. Corneth, Jan 02 2019
    
  • PARI
    A071625(n) = #Set(factor(n)[, 2]); \\ From A071625
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A323022(n) = A071625(A181819(n)); \\ Antti Karttunen, Jan 03 2019

Formula

Extensions

More terms from Antti Karttunen, Jan 03 2019

A325272 Adjusted frequency depth of n!.

Original entry on oeis.org

0, 1, 3, 4, 5, 4, 6, 6, 6, 4, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is one plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

Examples

			Recursively applying A181819 starting with 120 gives 120 -> 20 -> 6 -> 4 -> 3, so a(5) = 5.
		

Crossrefs

a(n) = A001222(A325275(n)).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fd[n_]:=Switch[n,1,0,?PrimeQ,1,,1+fd[Times@@Prime/@Last/@FactorInteger[n]]];
    Table[fd[n!],{n,30}]

Formula

a(n) = A323014(n!).

A325238 First positive integer with each omega-sequence.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 96, 120, 128, 192, 210, 216, 240, 256, 360, 384, 420, 480, 512, 720, 768, 840, 900, 960, 1024, 1260, 1296, 1440, 1536, 1680, 1920, 2048, 2310, 2520, 2880, 3072, 3360, 3840, 4096, 4620, 5040, 5760, 6144, 6720
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = frequency depth of n, and the k-th part is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, given by red(n = p^i*...*q^j) = prime(i)*...*prime(j), i.e., the product of primes indexed by the prime exponents of n.

Examples

			The sequence of terms together with their omega-sequences begins:
    1:
    2: 1
    4: 2 1
    6: 2 2 1
    8: 3 1
   12: 3 2 2 1
   16: 4 1
   24: 4 2 2 1
   30: 3 3 1
   32: 5 1
   36: 4 2 1
   48: 5 2 2 1
   60: 4 3 2 2 1
   64: 6 1
   96: 6 2 2 1
  120: 5 3 2 2 1
  128: 7 1
  192: 7 2 2 1
  210: 4 4 1
  216: 6 2 1
  240: 6 3 2 2 1
  256: 8 1
  360: 6 3 3 1
  384: 8 2 2 1
  420: 5 4 2 2 1
		

Crossrefs

Programs

  • Mathematica
    tomseq[n_]:=If[n<=1,{},Most[FixedPointList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]]]]];
    omseqs=Table[Total/@tomseq[n],{n,1000}];
    Sort[Table[Position[omseqs,x][[1,1]],{x,Union[omseqs]}]]

A325273 Prime omicron of n!.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The prime omicron of n (A304465) is 0 if n is 1, 1 if n is prime, and otherwise the second-to-last part of the omega-sequence of n. For example, the prime omicron of 180 is 2.
Conjecture: all terms after a(10) = 4 are less than 4.
From James Rayman, Apr 17 2021: (Start)
The conjecture is false. a(3804) = 4. In fact, there are 91 values of n < 10000 such that a(n) = 4.
The first value of n such that a(n) = 5 is 37934. For any other n < 5*10^5, a(n) < 5. (End)

Crossrefs

a(n) = A055396(A325275(n)/2).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    omicron[n_]:=Switch[n,1,0,?PrimeQ,1,,omseq[n][[-2]]];
    Table[omicron[n!],{n,0,100}]
  • Python
    from sympy.ntheory import *
    def red(v):
        r = {}
        for i in v: r[i] = r.get(i, 0) + 1
        return r
    def omicron(v):
        if len(v) == 0: return 0
        if len(v) == 1: return v[0]
        else: return omicron(list(red(v).values()))
    f, a_list = {}, []
    for i in range(101):
        a_list.append(omicron(list(f.values())))
        g = factorint(i+1)
        for k in g: f[k] = f.get(k, 0) + g[k]
    print(a_list) # James Rayman, Apr 17 2021

Extensions

More terms from James Rayman, Apr 17 2021

A353840 Trajectory of the partition run-sum transformation of n, using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 7, 8, 5, 9, 7, 10, 11, 12, 9, 7, 13, 14, 15, 16, 7, 17, 18, 14, 19, 20, 15, 21, 22, 23, 24, 15, 25, 13, 26, 27, 13, 28, 21, 29, 30, 31, 32, 11, 33, 34, 35, 36, 21, 37, 38, 39, 40, 25, 13, 41, 42, 43, 44, 33, 45, 35, 46, 47, 48, 21, 49, 19
Offset: 1

Views

Author

Gus Wiseman, May 25 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 given in row 12 corresponds to the partitions (2,1,1) -> (2,2) -> (4).
This is the iteration of the transformation f described by Kimberling at A237685.

Examples

			Triangle begins:
   1
   2
   3
   4  3
   5
   6
   7
   8  5
   9  7
  10
  11
  12  9  7
Row 87780 is the following trajectory (left column), with prime indices shown on the right:
  87780: {1,1,2,3,4,5,8}
  65835: {2,2,3,4,5,8}
  51205: {3,4,4,5,8}
  19855: {3,5,8,8}
   2915: {3,5,16}
		

Crossrefs

The version for run-lengths instead of sums is A325239 or A325277.
This is the iteration of A353832, with composition version A353847.
Row-lengths are A353841, counted by A353846.
Final terms are A353842.
Counting rows by final omega gives A353843.
Rows ending in a prime number are A353844, counted by A353845.
These sequences for compositions are A353853-A353859.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A182850 or A323014 gives frequency depth.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353862 gives greatest run-sum of prime indices, least A353931.

Programs

  • Mathematica
    Table[NestWhileList[Times@@Prime/@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&,n,Not@*SquareFreeQ],{n,30}]

A325755 Numbers n divisible by their prime shadow A181819(n).

Original entry on oeis.org

1, 2, 9, 12, 18, 36, 40, 60, 84, 112, 120, 125, 132, 156, 180, 204, 225, 228, 250, 252, 276, 280, 336, 348, 352, 360, 372, 396, 440, 441, 444, 450, 468, 492, 516, 520, 540, 560, 564, 600, 612, 636, 675, 680, 684, 708, 732, 760, 804, 828, 832, 840, 852, 876
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions containing their multiset of multiplicities as a submultiset (counted by A325702).

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
    60: {1,1,2,3}
    84: {1,1,2,4}
   112: {1,1,1,1,4}
   120: {1,1,1,2,3}
   125: {3,3,3}
   132: {1,1,2,5}
   156: {1,1,2,6}
   180: {1,1,2,2,3}
   204: {1,1,2,7}
   225: {2,2,3,3}
   228: {1,1,2,8}
   250: {1,3,3,3}
   252: {1,1,2,2,4}
		

Crossrefs

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Divisible[#,red[#]]&]

A325268 Triangle read by rows where T(n,k) is the number of integer partitions of n with omicron k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 7, 2, 0, 0, 1, 0, 1, 12, 1, 0, 0, 0, 1, 0, 1, 17, 2, 1, 0, 0, 0, 1, 0, 1, 24, 4, 0, 0, 0, 0, 0, 1, 0, 1, 33, 5, 1, 1, 0, 0, 0, 0, 1, 0, 1, 44, 9, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 57, 14, 3, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. The omicron of the partition is 0 if the omega-sequence is empty, 1 if it is a singleton, and otherwise the second-to-last part. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1), and its omicron is 2.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  3  0  1
  0  1  5  0  0  1
  0  1  7  2  0  0  1
  0  1 12  1  0  0  0  1
  0  1 17  2  1  0  0  0  1
  0  1 24  4  0  0  0  0  0  1
  0  1 33  5  1  1  0  0  0  0  1
  0  1 44  9  1  0  0  0  0  0  0  1
  0  1 57 14  3  0  1  0  0  0  0  0  1
  0  1 76 20  3  0  0  0  0  0  0  0  0  1
Row n = 8 counts the following partitions.
  (8)  (44)       (431)  (2222)  (11111111)
       (53)       (521)
       (62)
       (71)
       (332)
       (422)
       (611)
       (3221)
       (3311)
       (4211)
       (5111)
       (22211)
       (32111)
       (41111)
       (221111)
       (311111)
       (2111111)
		

Crossrefs

Row sums are A000041. Column k = 2 is A325267.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Switch[#,{},0,{},1,,NestWhile[Sort[Length/@Split[#]]&,#,Length[#]>1&]//First]==k&]],{n,0,10},{k,0,n}]
  • PARI
    omicron(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); r=#p; for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L); r)}
    row(n)={my(v=vector(1+n)); forpart(p=n, v[1 + omicron(Vec(p))]++); v}
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023

A329746 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 with runs-resistance k, 0 <= k <= n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 0, 1, 3, 4, 3, 0, 0, 1, 1, 4, 8, 1, 0, 0, 1, 3, 6, 10, 2, 0, 0, 0, 1, 2, 8, 13, 6, 0, 0, 0, 0, 1, 3, 11, 20, 7, 0, 0, 0, 0, 0, 1, 1, 11, 29, 14, 0, 0, 0, 0, 0, 0, 1, 5, 19, 31, 20, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
  1
  1  1
  1  1  1
  1  2  1  1
  1  1  2  3  0
  1  3  4  3  0  0
  1  1  4  8  1  0  0
  1  3  6 10  2  0  0  0
  1  2  8 13  6  0  0  0  0
  1  3 11 20  7  0  0  0  0  0
  1  1 11 29 14  0  0  0  0  0  0
  1  5 19 31 20  1  0  0  0  0  0  0
  1  1 17 50 30  2  0  0  0  0  0  0  0
  1  3 25 64 37  5  0  0  0  0  0  0  0  0
  1  3 29 74 62  7  0  0  0  0  0  0  0  0  0
Row n = 8 counts the following partitions:
  (8)  (44)        (53)    (332)      (4211)
       (2222)      (62)    (422)      (32111)
       (11111111)  (71)    (611)
                   (431)   (3221)
                   (521)   (5111)
                   (3311)  (22211)
                           (41111)
                           (221111)
                           (311111)
                           (2111111)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A032741.
Column k = 2 is A329745.
A similar invariant is frequency depth; see A323014, A325280.
The version for compositions is A329744.
The version for binary words is A329767.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]
  • PARI
    \\ rr(p) gives runs resistance of partition.
    rr(p)={my(r=0); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L, i-k); k=i)); p=Vec(L); r++); r}
    row(n)={my(v=vector(n)); forpart(p=n, v[1+rr(Vec(p))]++); v}
    { for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023

A325249 Sum of the omega-sequence of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 4, 3, 5, 1, 8, 1, 5, 5, 5, 1, 8, 1, 8, 5, 5, 1, 9, 3, 5, 4, 8, 1, 7, 1, 6, 5, 5, 5, 7, 1, 5, 5, 9, 1, 7, 1, 8, 8, 5, 1, 10, 3, 8, 5, 8, 1, 9, 5, 9, 5, 5, 1, 12, 1, 5, 8, 7, 5, 7, 1, 8, 5, 7, 1, 10, 1, 5, 8, 8, 5, 7, 1, 10, 5, 5, 1, 12, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The omega-sequence of 180 is (5,3,2,2,1) with sum 13, so a(180) = 13.
		

Crossrefs

Positions of m's are A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Total[omseq[n]],{n,100}]

Formula

a(n) = A056239(A325248(n)).
a(n!) = A325274(n).

A225486 Maximal frequency depth for the partitions of n.

Original entry on oeis.org

0, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Clark Kimberling, May 08 2013

Keywords

Comments

See A225485 for the definition of frequency depth.
The frequency depth of an integer partition is the number of times one must take the multiset of multiplicities to reach (1). For example, the partition (32211) has frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2) -> (1). Differs from A325282 at a(0) and a(1). - Gus Wiseman, Apr 19 2019

Examples

			(See A225485.)
		

Crossrefs

Run lengths are A325258, i.e., first differences of Levine's sequence A011784.

Programs

  • Mathematica
    c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &]
    f[s_] := f[s] = Drop[FixedPointList[c, s], -2]
    t[s_] := t[s] = Length[f[s]]
    u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], k]],
        {k, 1, Length[IntegerPartitions[n]]}];
    Prepend[Table[Max[u[n]], {n, 2, 10}], 0]
    (* second program *)
    grw[q_]:=Join@@Table[ConstantArray[i,q[[Length[q]-i+1]]],{i,Length[q]}];
    Join@@MapIndexed[ConstantArray[#2[[1]]-1,#1]&,Length[#]-Last[#]&/@NestList[grw,{1,1},6]] (* Gus Wiseman, Apr 19 2019 *)

Formula

a(n) = number of terms in row n of the array in A225485, for n > 0.

Extensions

More terms from Gus Wiseman, Apr 19 2019
Previous Showing 11-20 of 92 results. Next