cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 92 results. Next

A353743 Least number with run-sum trajectory of length k; a(0) = 1.

Original entry on oeis.org

1, 2, 4, 12, 84, 1596, 84588, 11081028, 3446199708, 2477817590052, 4011586678294188, 14726534696017964148, 120183249654202605411828, 2146833388573021140471483564, 83453854313999050793547980583372, 7011542477899258250521520684673165324
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832, A353847) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     12: {1,1,2}
     84: {1,1,2,4}
   1596: {1,1,2,4,8}
  84588: {1,1,2,4,8,16}
		

Crossrefs

The ordered version is A072639, for run-lengths A333629.
The version for run-lengths is A325278, firsts in A182850 or A323014.
The run-sum trajectory is the iteration of A353832.
The first length-k row of A353840 has index a(k).
Other sequences pertaining to this trajectory are A353841-A353846.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Join[{1,2},Table[2*Product[Prime[2^k],{k,0,n}],{n,0,6}]]

Formula

a(n > 1) = 2 * Product_{k=0..n-2} prime(2^k).
a(n > 0) = 2 * A325782(n).

A325247 Numbers whose omega-sequence is strict (no repeated parts).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

First differs from A323306 in having 216.
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
Also Heinz numbers of integer partitions of whose omega-sequence is strict (counted by A325250). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     3: {2}
     4: {1,1}
     5: {3}
     7: {4}
     8: {1,1,1}
     9: {2,2}
    11: {5}
    13: {6}
    16: {1,1,1,1}
    17: {7}
    19: {8}
    23: {9}
    25: {3,3}
    27: {2,2,2}
    29: {10}
    31: {11}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
		

Crossrefs

Positions of squarefree numbers in A325248.
Omega-sequence statistics: A001221 (second omega), A001222 (first omega), A071625 (third omega), A304465 (second-to-last omega), A182850 or A323014 (depth), A323022 (fourth omega), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#1]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],UnsameQ@@omseq[#]&]

A325283 Heinz numbers of integer partitions with maximum adjusted frequency depth for partitions of that sum.

Original entry on oeis.org

2, 4, 6, 12, 18, 20, 24, 28, 40, 48, 60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280
Offset: 1

Views

Author

Gus Wiseman, Apr 17 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325254.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
  2:   {1}         (1)
  4:   {1,1}       (2,1)
  6:   {1,2}       (2,2,1)
  12:  {1,1,2}     (3,2,2,1)
  18:  {1,2,2}     (3,2,2,1)
  20:  {1,1,3}     (3,2,2,1)
  24:  {1,1,1,2}   (4,2,2,1)
  28:  {1,1,4}     (3,2,2,1)
  40:  {1,1,1,3}   (4,2,2,1)
  48:  {1,1,1,1,2} (5,2,2,1)
  60:  {1,1,2,3}   (4,3,2,2,1)
  84:  {1,1,2,4}   (4,3,2,2,1)
  90:  {1,2,2,3}   (4,3,2,2,1)
  120: {1,1,1,2,3} (5,3,2,2,1)
  126: {1,2,2,4}   (4,3,2,2,1)
  132: {1,1,2,5}   (4,3,2,2,1)
  140: {1,1,3,4}   (4,3,2,2,1)
  150: {1,2,3,3}   (4,3,2,2,1)
  156: {1,1,2,6}   (4,3,2,2,1)
  168: {1,1,1,2,4} (5,3,2,2,1)
  180: {1,1,2,2,3} (5,3,2,2,1)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    nn=30;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}];
    Select[Range[Prime[nn]],fdadj[primeMS[#]]==mfds[[Total[primeMS[#]]]]&]

A353842 Last part of the trajectory of the partition run-sum transformation of n, using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 7, 13, 14, 15, 7, 17, 14, 19, 15, 21, 22, 23, 15, 13, 26, 13, 21, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 13, 41, 42, 43, 33, 35, 46, 47, 21, 19, 26, 51, 39, 53, 26, 55, 35, 57, 58, 59, 35, 61, 62, 19, 13, 65, 66, 67, 51
Offset: 1

Views

Author

Gus Wiseman, May 25 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The partition run-sum trajectory of 87780 is: 87780 -> 65835 -> 51205 -> 19855 -> 2915, so a(87780) = 2915.
		

Crossrefs

The fixed points and image are A005117.
For run-lengths instead of sums we have A304464/A304465, counted by A325268.
These are the row-ends of A353840.
Other sequences pertaining to partition trajectory are A353841-A353846.
The version for compositions is A353855, run-ends of A353853.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A182850 and A323014 give frequency depth.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[NestWhile[Times@@Prime/@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]&,n,!SquareFreeQ[#]&],{n,100}]

A323056 Numbers with exactly five distinct exponents in their prime factorization, or five distinct parts in their prime signature.

Original entry on oeis.org

174636000, 206388000, 244490400, 261954000, 269892000, 274428000, 288943200, 291060000, 301644000, 309582000, 343980000, 349272000, 365148000, 366735600, 377848800, 383292000, 404838000, 411642000, 412776000, 422301600, 433414800, 449820000, 452466000, 457380000
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(5) = 174636000.
Positions of 5's in A071625.
Numbers k such that A001221(A181819(k)) = 5.

Examples

			174636000 = 2^5 * 3^4 * 5^3 * 7^2 * 11^1 has five distinct exponents so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: A323055.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Mathematica
    Select[Range[300000000],Length[Union[Last/@FactorInteger[#]]]==5&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 5 \\ David A. Corneth, Jan 12 2019

Extensions

a(13)-a(24) from Daniel Suteu, Jan 12 2019

A325264 Numbers whose omega-sequence sums to 7.

Original entry on oeis.org

30, 36, 42, 64, 66, 70, 78, 100, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 196, 222, 225, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The sequence of terms together with their prime indices and omega-sequences begins:
   30: {1,2,3} (3,3,1)
   36: {1,1,2,2} (4,2,1)
   42: {1,2,4} (3,3,1)
   64: {1,1,1,1,1,1} (6,1)
   66: {1,2,5} (3,3,1)
   70: {1,3,4} (3,3,1)
   78: {1,2,6} (3,3,1)
  100: {1,1,3,3} (4,2,1)
  102: {1,2,7} (3,3,1)
  105: {2,3,4} (3,3,1)
  110: {1,3,5} (3,3,1)
  114: {1,2,8} (3,3,1)
  130: {1,3,6} (3,3,1)
  138: {1,2,9} (3,3,1)
  154: {1,4,5} (3,3,1)
  165: {2,3,5} (3,3,1)
  170: {1,3,7} (3,3,1)
  174: {1,2,10} (3,3,1)
  182: {1,4,6} (3,3,1)
  186: {1,2,11} (3,3,1)
  190: {1,3,8} (3,3,1)
  195: {2,3,6} (3,3,1)
  196: {1,1,4,4} (4,2,1)
		

Crossrefs

Positions of 7's in A325249.
Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],Total[omseq[#]]==7&]

A325281 Numbers of the form a*b, a*a*b, or a*a*b*c where a, b, and c are distinct primes. Numbers with sorted prime signature (1,1), (1,2), or (1,1,2).

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 50, 51, 52, 55, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 99, 106, 111, 115, 116, 117, 118, 119, 122, 123, 124, 126, 129, 132
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

Also numbers whose adjusted frequency depth is one plus their number of prime factors counted with multiplicity. The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is one plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose adjusted frequency depth is equal to their length plus 1. The enumeration of these partitions by sum is given by A127002.

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
   6:     {1,2} (2,2,1)
  10:     {1,3} (2,2,1)
  12:   {1,1,2} (3,2,2,1)
  14:     {1,4} (2,2,1)
  15:     {2,3} (2,2,1)
  18:   {1,2,2} (3,2,2,1)
  20:   {1,1,3} (3,2,2,1)
  21:     {2,4} (2,2,1)
  22:     {1,5} (2,2,1)
  26:     {1,6} (2,2,1)
  28:   {1,1,4} (3,2,2,1)
  33:     {2,5} (2,2,1)
  34:     {1,7} (2,2,1)
  35:     {3,4} (2,2,1)
  38:     {1,8} (2,2,1)
  39:     {2,6} (2,2,1)
  44:   {1,1,5} (3,2,2,1)
  45:   {2,2,3} (3,2,2,1)
  46:     {1,9} (2,2,1)
  50:   {1,3,3} (3,2,2,1)
  51:     {2,7} (2,2,1)
  52:   {1,1,6} (3,2,2,1)
  55:     {3,5} (2,2,1)
  57:     {2,8} (2,2,1)
  58:    {1,10} (2,2,1)
  60: {1,1,2,3} (4,3,2,2,1)
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
    Select[Range[100],fdadj[#]==PrimeOmega[#]+1&]

A325336 Triangle read by rows where T(n,k) is the number of integer partitions of n with adjusted frequency depth k whose parts cover an initial interval of positive integers.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 0, 1, 0, 3, 2, 0, 0, 0, 0, 0, 1, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1, 5, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 6, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).

Examples

			Triangle begins:
  1
  0  1
  0  0  1
  0  0  1  1
  0  0  1  0  1
  0  0  1  0  2  0
  0  0  1  2  1  0  0
  0  0  1  0  3  1  0  0
  0  0  1  0  3  2  0  0  0
  0  0  1  1  3  3  0  0  0  0
  0  0  1  1  5  3  0  0  0  0  0
  0  0  1  0  8  3  0  0  0  0  0  0
  0  0  1  2  6  6  0  0  0  0  0  0  0
  0  0  1  0 13  4  0  0  0  0  0  0  0  0
  0  0  1  0 12  8  1  0  0  0  0  0  0  0  0
  0  0  1  2 14  7  3  0  0  0  0  0  0  0  0  0
  0  0  1  0 17 11  3  0  0  0  0  0  0  0  0  0  0
  0  0  1  0 22  7  8  0  0  0  0  0  0  0  0  0  0  0
  0  0  1  2 17 16 10  0  0  0  0  0  0  0  0  0  0  0  0
  0  0  1  0 28 10 15  0  0  0  0  0  0  0  0  0  0  0  0  0
  0  0  1  1 29 13 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Row 15 counts the following partitions:
  111111111111111  54321       433221          333321        4322211
                   2222211111  443211          3332211       4332111
                               3322221         33222111      43221111
                               22222221        322221111
                               32222211        332211111
                               33321111        432111111
                               222222111       321111111111
                               3222111111
                               3321111111
                               22221111111
                               32211111111
                               222111111111
                               2211111111111
                               21111111111111
		

Crossrefs

Row sums are A000009.
Column k = 3 is A325334.
Column k = 4 is A325335.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&fdadj[#]==k&]],{n,0,30},{k,0,n}]
  • PARI
    depth(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L; r++); r)}
    isok(p)={if(#p, for(i=1, #p, if(p[i]-1 > if(i>1, p[i-1], 0), return(0)))); 1}
    row(n)={my(v=vector(1+n)); forpart(p=n, if(isok(p), v[1+depth(Vec(p))]++)); v}
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023

A325414 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with omega-sequence summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 4, 2, 2, 1, 1, 0, 1, 0, 1, 0, 4, 0, 3, 3, 2, 2, 2, 3, 1, 0, 1, 0, 0, 1, 4, 0, 3, 3, 3, 4, 1, 6, 3, 1, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1) with sum 13, so (32211) is counted under T(9,13).

Examples

			Triangle begins:
  1
  0 1
  0 1 0 1
  0 1 0 0 1 1
  0 1 0 1 0 2 0 0 1
  0 1 0 0 0 2 1 0 2 1
  0 1 0 1 1 2 0 3 1 1 1
  0 1 0 0 0 3 0 1 4 2 2 1 1
  0 1 0 1 0 4 0 3 3 2 2 2 3 1
  0 1 0 0 1 4 0 3 3 3 4 1 6 3 1
  0 1 0 1 0 4 1 6 4 4 1 4 5 8 2 1
Row n = 9 counts the following partitions:
  9  333  54  432  441  3222    22221      411111  3321     32211     321111
          63  531  522  6111    33111              4221     42111
          72  621  711  222111  51111              4311     21111111
          81                    111111111          5211
                                                   2211111
                                                   3111111
		

Crossrefs

Row sums are A000041.
Row lengths are A325413(n) + 1 (because k starts at 0).
Number of nonzero terms in row n is A325415(n).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],Total[omseq[#]]==k&]],{n,0,10},{k,0,Max[Total/@omseq/@IntegerPartitions[n]]}]

A355382 Number of divisors d of n such that bigomega(d) = omega(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.
If positive integers are regarded as arrows from the number of prime factors to the number of distinct prime factors, this sequence counts divisible composable pairs. Is there a nice choice of a composition operation making this into an associative category?

Examples

			The set of divisors of 180 satisfying the condition is {12, 18, 20, 30, 45}, so a(180) = 5.
		

Crossrefs

The version with multiplicity is A181591.
For partitions we have A355383, with multiplicity A339006.
The version for compositions is A355384.
Positions of first appearances are A355386.
A000005 counts divisors.
A001221 counts prime indices without multiplicity.
A001222 count prime indices with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],PrimeOmega[#]==PrimeNu[n]&]],{n,100}]
Previous Showing 51-60 of 92 results. Next