cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 92 results. Next

A325410 Smallest k such that the adjusted frequency depth of k! is n > 2.

Original entry on oeis.org

3, 4, 5, 7, 26, 65, 942, 24147
Offset: 3

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

If infinite terms were allowed, we would have a(0) = 1, a(1) = 2, a(2) = infinity. It is possible this sequence is finite, or that there are additional gaps.
The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

Examples

			Column n is the sequence of images under A181819 starting with a(n)!:
  6  24  120  5040  403291461126605635584000000
  4  10  20   84    11264760
  3  4   6    12    240
     3   4    6     28
         3    4     6
              3     4
                    3
		

Crossrefs

a(n) is the first position of n in A325272.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
    dat=Table[fdadj[n!],{n,1000}];
    Table[Position[dat,k][[1,1]],{k,3,Max@@dat}]

A327403 Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum stable divisor (A327393, A327402).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number is stable if its distinct prime indices are pairwise indivisible. Stable numbers are listed in A316476. The maximum stable divisor of n is A327393(n).

Examples

			We have 798 -> 42 -> 6 -> 2 -> 1, so a(798) = 4.
		

Crossrefs

See link for additional cross-references.
Positions of first appearance of each integer are A325782.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[FixedPointList[#/Max[Select[Divisors[#],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]]&,n]]-2,{n,100}]
  • PARI
    A327403(n) = for(k=0,oo,my(nextn=A327402(n)); if(nextn==n,return(k)); n = nextn); \\ Antti Karttunen, Jan 28 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 28 2025

A355391 Position of first appearance of n in A181591 = binomial(bigomega(n), omega(n)).

Original entry on oeis.org

1, 4, 8, 16, 32, 24, 128, 256, 512, 48, 2048, 4096, 8192, 16384, 96, 65536, 131072, 262144, 524288, 240, 192, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 384, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 480, 768, 137438953472
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Comments

The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.
We have A181591(2^k) = k, so the sequence is fully defined. Positions meeting this maximum are A185024, complement A006987.

Examples

			The terms together with their prime indices begin:
       1: {}
       4: {1,1}
       8: {1,1,1}
      16: {1,1,1,1}
      32: {1,1,1,1,1}
      24: {1,1,1,2}
     128: {1,1,1,1,1,1,1}
     256: {1,1,1,1,1,1,1,1}
     512: {1,1,1,1,1,1,1,1,1}
      48: {1,1,1,1,2}
    2048: {1,1,1,1,1,1,1,1,1,1,1}
    4096: {1,1,1,1,1,1,1,1,1,1,1,1}
    8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
   16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
      96: {1,1,1,1,1,2}
   65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  131072: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  262144: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  524288: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
     240: {1,1,1,1,2,3}
     192: {1,1,1,1,1,1,2}
		

Crossrefs

Positions of powers of 2 are A185024, complement A006987.
Counting multiplicity gives A355386.
The sorted version is A355392.
A000005 counts divisors.
A001221 counts prime factors without multiplicity.
A001222 count prime factors with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.

Programs

  • Mathematica
    s=Table[Binomial[PrimeOmega[n],PrimeNu[n]],{n,1000}];
    Table[Position[s,k][[1,1]],{k,Select[Union[s],SubsetQ[s,Range[#]]&]}]
  • PARI
    f(n) = binomial(bigomega(n), omega(n)); \\ A181591
    a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, Jul 10 2022

Formula

binomial(bigomega(a(n)), omega(a(n))) = n.

Extensions

a(22)-a(28) from Michel Marcus, Jul 10 2022
a(29)-a(37) from Amiram Eldar, Jul 10 2022

A307734 Smallest k such that the adjusted frequency depth of k! is n, and 0 if there is no such k.

Original entry on oeis.org

1, 2, 0, 3, 4, 5, 7, 26, 65, 942, 24147
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
Conjecture: this sequence has infinitely many nonzero terms.

Examples

			Column n is the sequence of images under A181819 starting with a(n)!:
  -  2  -  6  24  120  5040  403291461126605635584000000
           4  10  20   84    11264760
           3  4   6    12    240
              3   4    6     28
                  3    4     6
                       3     4
                             3
		

Crossrefs

Essentially the same as A325410.
a(n) is zero or the first position of n in A325272.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

A324206 Numbers with exactly six distinct exponents in their prime factorization, or six distinct parts in their prime signature.

Original entry on oeis.org

5244319080000, 6197831640000, 6857955720000, 7342046712000, 7664774040000, 7866478620000, 8241072840000, 8676964296000, 8740531800000, 9278410680000, 9296747460000, 9578467080000, 9601138008000, 10286933580000, 10329719400000, 10488638160000, 10598658840000, 10705345560000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			6197831640000 = 2^6 * 3^5 * 5^4 * 7^3 * 11 * 13^2 is in the sequence as there are 6 distinct exponents; 1 through 6.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 6

A324207 Numbers with exactly seven distinct exponents in their prime factorization, or seven distinct parts in their prime signature.

Original entry on oeis.org

2677277333530800000, 2992251137475600000, 3164055030536400000, 3501054974617200000, 3536296798834800000, 3622198745365200000, 3748188266943120000, 4015916000296200000, 4189151592465840000, 4207150095548400000, 4280780335431600000, 4373290124002800000, 4429677042750960000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			2677277333530800000 = 2^7 * 3^6 * 5^5 * 7^4 * 11^3 * 13^2 * 17 is in the sequence. There are exactly 7 distinct exponents; 1 through 7 in it.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 7

A325252 Number of integer partitions of n with frequency depth floor(sqrt(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 8, 11, 11, 19, 17, 25, 29, 83, 113, 124, 171, 190, 242, 289, 368, 399, 796, 981, 1182, 1442, 1709, 2096, 2469, 2990, 3545, 4276, 5037, 8417, 10466, 12824, 15721, 19104, 23267, 27981, 33856, 40515, 48508, 57826, 68982, 81493, 446, 738
Offset: 0

Views

Author

Gus Wiseman, Apr 22 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).

Examples

			The a(2) = 1 through a(12) = 19 partitions (A = 10, B = 11):
  2  3  22    11111  33      1111111  44        54      64    65    75
        1111         222              2222      63      73    74    84
                     111111           11111111  72      82    83    93
                                                81      91    92    A2
                                                432     532   A1    B1
                                                531     541   542   543
                                                621     631   632   642
                                                222111  721   641   651
                                                        3322  731   732
                                                        4321  821   741
                                                        4411  5321  831
                                                                    921
                                                                    4422
                                                                    5421
                                                                    5511
                                                                    6321
                                                                    332211
                                                                    333111
                                                                    22221111
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Floor[Sqrt[n]]&]],{n,0,30}]

A325265 Numbers with sum of omega-sequence > 4.

Original entry on oeis.org

6, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The sequence of terms together with their omega-sequences begins:
   6: 2 2 1       46: 2 2 1         80: 5 2 2 1       112: 5 2 2 1
  10: 2 2 1       48: 5 2 2 1       81: 4 1           114: 3 3 1
  12: 3 2 2 1     50: 3 2 2 1       82: 2 2 1         115: 2 2 1
  14: 2 2 1       51: 2 2 1         84: 4 3 2 2 1     116: 3 2 2 1
  15: 2 2 1       52: 3 2 2 1       85: 2 2 1         117: 3 2 2 1
  16: 4 1         54: 4 2 2 1       86: 2 2 1         118: 2 2 1
  18: 3 2 2 1     55: 2 2 1         87: 2 2 1         119: 2 2 1
  20: 3 2 2 1     56: 4 2 2 1       88: 4 2 2 1       120: 5 3 2 2 1
  21: 2 2 1       57: 2 2 1         90: 4 3 2 2 1     122: 2 2 1
  22: 2 2 1       58: 2 2 1         91: 2 2 1         123: 2 2 1
  24: 4 2 2 1     60: 4 3 2 2 1     92: 3 2 2 1       124: 3 2 2 1
  26: 2 2 1       62: 2 2 1         93: 2 2 1         126: 4 3 2 2 1
  28: 3 2 2 1     63: 3 2 2 1       94: 2 2 1         128: 7 1
  30: 3 3 1       64: 6 1           95: 2 2 1         129: 2 2 1
  32: 5 1         65: 2 2 1         96: 6 2 2 1       130: 3 3 1
  33: 2 2 1       66: 3 3 1         98: 3 2 2 1       132: 4 3 2 2 1
  34: 2 2 1       68: 3 2 2 1       99: 3 2 2 1       133: 2 2 1
  35: 2 2 1       69: 2 2 1        100: 4 2 1         134: 2 2 1
  36: 4 2 1       70: 3 3 1        102: 3 3 1         135: 4 2 2 1
  38: 2 2 1       72: 5 2 2 1      104: 4 2 2 1       136: 4 2 2 1
  39: 2 2 1       74: 2 2 1        105: 3 3 1         138: 3 3 1
  40: 4 2 2 1     75: 3 2 2 1      106: 2 2 1         140: 4 3 2 2 1
  42: 3 3 1       76: 3 2 2 1      108: 5 2 2 1       141: 2 2 1
  44: 3 2 2 1     77: 2 2 1        110: 3 3 1         142: 2 2 1
  45: 3 2 2 1     78: 3 3 1        111: 2 2 1         143: 2 2 1
		

Crossrefs

Positions of terms > 4 in A325249.
Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],Total[omseq[#]]>4&]

A325411 Numbers whose omega-sequence has repeated parts.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

First differs from A323304 in lacking 216. First differs from A106543 in having 144.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose omega-sequence has repeated parts. The enumeration of these partitions by sum is given by A325285.
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), which has repeated parts, so 180 is in the sequence.

Examples

			The sequence of terms together with their omega-sequences begins:
   6: 2 2 1       51: 2 2 1         86: 2 2 1        119: 2 2 1
  10: 2 2 1       52: 3 2 2 1       87: 2 2 1        120: 5 3 2 2 1
  12: 3 2 2 1     54: 4 2 2 1       88: 4 2 2 1      122: 2 2 1
  14: 2 2 1       55: 2 2 1         90: 4 3 2 2 1    123: 2 2 1
  15: 2 2 1       56: 4 2 2 1       91: 2 2 1        124: 3 2 2 1
  18: 3 2 2 1     57: 2 2 1         92: 3 2 2 1      126: 4 3 2 2 1
  20: 3 2 2 1     58: 2 2 1         93: 2 2 1        129: 2 2 1
  21: 2 2 1       60: 4 3 2 2 1     94: 2 2 1        130: 3 3 1
  22: 2 2 1       62: 2 2 1         95: 2 2 1        132: 4 3 2 2 1
  24: 4 2 2 1     63: 3 2 2 1       96: 6 2 2 1      133: 2 2 1
  26: 2 2 1       65: 2 2 1         98: 3 2 2 1      134: 2 2 1
  28: 3 2 2 1     66: 3 3 1         99: 3 2 2 1      135: 4 2 2 1
  30: 3 3 1       68: 3 2 2 1      102: 3 3 1        136: 4 2 2 1
  33: 2 2 1       69: 2 2 1        104: 4 2 2 1      138: 3 3 1
  34: 2 2 1       70: 3 3 1        105: 3 3 1        140: 4 3 2 2 1
  35: 2 2 1       72: 5 2 2 1      106: 2 2 1        141: 2 2 1
  38: 2 2 1       74: 2 2 1        108: 5 2 2 1      142: 2 2 1
  39: 2 2 1       75: 3 2 2 1      110: 3 3 1        143: 2 2 1
  40: 4 2 2 1     76: 3 2 2 1      111: 2 2 1        144: 6 2 2 1
  42: 3 3 1       77: 2 2 1        112: 5 2 2 1      145: 2 2 1
  44: 3 2 2 1     78: 3 3 1        114: 3 3 1        146: 2 2 1
  45: 3 2 2 1     80: 5 2 2 1      115: 2 2 1        147: 3 2 2 1
  46: 2 2 1       82: 2 2 1        116: 3 2 2 1      148: 3 2 2 1
  48: 5 2 2 1     84: 4 3 2 2 1    117: 3 2 2 1      150: 4 3 2 2 1
  50: 3 2 2 1     85: 2 2 1        118: 2 2 1        152: 4 2 2 1
		

Crossrefs

Positions of nonsquarefree numbers in A325248.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],!UnsameQ@@omseq[#]&]

A354233 Least number with n runs in ordered prime signature.

Original entry on oeis.org

1, 2, 12, 90, 2100, 48510, 3303300, 139369230, 18138420300, 1157182716690, 278261505822300, 30168910606824990, 9894144362523521100, 1693350783450479863710, 715178436956287675671300, 147157263134197051595990130, 83730945863531292204568790100
Offset: 0

Views

Author

Gus Wiseman, May 20 2022

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The prime indices of 90 are {1,2,2,3}, with multiplicities {1,2,1}, with runs {{1},{2},{1}}, and this is the first case of 3 runs, so a(3) = 90.
		

Crossrefs

Positions of first appearances in A353745.
A001222 counts prime factors with multiplicity, distinct A001221.
A005361 gives product of signature, firsts A353500 (sorted A085629).
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A182850 gives frequency depth of prime indices, counted by A225485.
A323014 gives adjusted frequency depth of prime indices, counted by A325280.

Programs

  • Mathematica
    Table[Product[Prime[i]^If[EvenQ[n-i],1,2],{i,n}],{n,0,15}]
Previous Showing 81-90 of 92 results. Next